cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 165 results. Next

A342449 a(n) = Sum_{k=1..n} gcd(k,n)^k.

Original entry on oeis.org

1, 5, 29, 262, 3129, 46705, 823549, 16777544, 387421251, 10000003469, 285311670621, 8916100581446, 302875106592265, 11112006826387025, 437893890391180013, 18446744073743123788, 827240261886336764193, 39346408075299116257065
Offset: 1

Views

Author

Seiichi Manyama, Mar 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[GCD[k, n]^k, {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Mar 13 2021 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^k);

Formula

If p is prime, a(p) = p-1 + p^p = A231712(p).

A347104 Dirichlet g.f.: primezeta(s-1) * zeta(s-1) / zeta(s).

Original entry on oeis.org

0, 2, 3, 2, 5, 7, 7, 4, 6, 13, 11, 10, 13, 19, 22, 8, 17, 18, 19, 18, 32, 31, 23, 20, 20, 37, 18, 26, 29, 38, 31, 16, 52, 49, 58, 24, 37, 55, 62, 36, 41, 56, 43, 42, 54, 67, 47, 40, 42, 60, 82, 50, 53, 54, 94, 52, 92, 85, 59, 60, 61, 91, 78, 32, 112, 92, 67, 66, 112, 106, 71, 48, 73, 109, 100
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 18 2021

Keywords

Comments

a(n) is the sum of the prime terms in row n of A050873.
Moebius transform of A328260.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, MoebiusMu[n/#] # PrimeNu[#] &], {n, 1, 75}]
    Table[DivisorSum[n, # EulerPhi[n/#] &, PrimeQ[#] &], {n, 1, 75}]
    Table[Sum[Boole[PrimeQ[GCD[n, k]]] GCD[n, k], {k, 1, n}], {n, 1, 75}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*omega(d)); \\ Michel Marcus, Aug 18 2021

Formula

a(n) = Sum_{d|n} mu(n/d) * d * omega(d).
a(n) = Sum_{p|n, p prime} p * phi(n/p).
a(n) = Sum_{k=1..n} A010051(gcd(n,k)) * gcd(n,k).

A347137 a(n) = Sum_{d|n} phi(d) * A003961(n/d), where A003961 shifts the prime factorization of its argument one step towards larger primes, and phi is Euler totient function.

Original entry on oeis.org

1, 4, 7, 14, 11, 28, 17, 46, 41, 44, 23, 98, 29, 68, 77, 146, 35, 164, 41, 154, 119, 92, 51, 322, 97, 116, 223, 238, 59, 308, 67, 454, 161, 140, 187, 574, 77, 164, 203, 506, 83, 476, 89, 322, 451, 204, 99, 1022, 229, 388, 245, 406, 111, 892, 253, 782, 287, 236, 119, 1078, 127, 268, 697, 1394, 319, 644, 137, 490
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2021

Keywords

Comments

Dirichlet convolution of Euler phi (A000010) with the prime shift function (A003961). Multiplicative because both A000010 and A003961 are.
Dirichlet convolution of the identity function (A000027) with the prime shifted phi (A003972).
Möbius transform of A347136.

Crossrefs

Cf. A000010, A000027, A000040, A001043, A003961, A003972, A008683, A151800, A347122, A347136 (inverse Möbius transform).
Cf. also A018804, A347237.

Programs

  • Mathematica
    f[p_, e_] := (q = NextPrime[p])^e + (p - 1)*(q^e - p^e)/(q - p); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2023 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A347137(n) = sumdiv(n,d,eulerphi(n/d)*A003961(d));

Formula

a(n) = Sum_{d|n} A000010(n/d) * A003961(d).
a(n) = Sum_{d|n} d * A003972(n/d).
a(n) = Sum_{d|n} A008683(n/d) * A347136(d).
a(n) = A347122(n) + 2*A000010(n).
a(A000040(n)) = A001043(n) - 1.
Multiplicative with a(p^e) = q(p)^e + (p-1)*(q(p)^e - p^e)/(q(p) - p), where q(p) = nextprime(p) = A151800(p). - Amiram Eldar, Sep 16 2023

A349123 a(n) = Sum_{d|n} A038040(n/d) * A003415(d), where A038040(n) = n*tau(n), and A003415 is the arithmetic derivative of n.

Original entry on oeis.org

0, 1, 1, 8, 1, 15, 1, 40, 12, 21, 1, 96, 1, 27, 24, 160, 1, 126, 1, 144, 30, 39, 1, 440, 20, 45, 90, 192, 1, 279, 1, 560, 42, 57, 36, 720, 1, 63, 48, 680, 1, 369, 1, 288, 234, 75, 1, 1680, 28, 270, 60, 336, 1, 810, 48, 920, 66, 93, 1, 1656, 1, 99, 306, 1792, 54, 549, 1, 432, 78, 531, 1, 3120, 1, 117, 330, 480, 54, 639
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

This sequence is the Dirichlet convolution of at least the following pairs of sequences:
- A003415 (the arithmetic derivative) with A038040,
- A000027 (the identity function) with A347130,
- A000203 (sigma) with A347131,
- A018804 with A319684,
- A060640 with A300251.

Crossrefs

Programs

  • Mathematica
    d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); a[n_] := DivisorSum[n, d[#]*(n/#)*DivisorSigma[0, n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A038040(n) = (n*numdiv(n));
    A349123(n) = sumdiv(n,d,A038040(d)*A003415(n/d));

Formula

a(n) = Sum_{d|n} A038040(d) * A003415(n/d).
a(n) = Sum_{d|n} d * A347130(n/d).
a(n) = Sum_{d|n} A000203(d) * A347131(n/d).
a(n) = Sum_{d|n} A018804(d) * A319684(n/d).
a(n) = Sum_{d|n} A060640(d) * A300251(n/d).
For all n >= 1, A348983(n) <= a(n) <= A349143(n).
a(n) = A003557(n) * A349124(n).

A384628 a(n) = Sum_{k = 1..n} gcd(n, floor(n / k)).

Original entry on oeis.org

1, 3, 5, 8, 9, 14, 13, 20, 19, 25, 21, 35, 25, 37, 37, 44, 33, 56, 37, 60, 51, 58, 45, 84, 53, 71, 69, 85, 57, 103, 61, 99, 83, 93, 83, 130, 73, 104, 101, 136, 81, 146, 85, 140, 129, 124, 93, 188, 103, 155, 131, 163, 105, 191, 127, 185, 145, 159, 117, 251, 121
Offset: 1

Views

Author

Ctibor O. Zizka, Jun 05 2025

Keywords

Comments

a(p) = A018804(p) for p prime (A000040).
Empirical observation: A005408(n) <= a(n) < (2 + sqrt(2)/10)*A000203(n).

Examples

			n = 3: a(3) = Sum_{k = 1..3} gcd(3, floor(3 / k)) = 3 + 1 + 1 = 5.
n = 4: a(4) = Sum_{k = 1..4} gcd(4, floor(4 / k)) = 4 + 2 + 1 + 1 = 8.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[GCD[n, Floor[n/k]], {k, 1, n}]; Array[a, 100] (* Amiram Eldar, Jun 05 2025 *)
  • PARI
    a(n) = sum(k=1, n, gcd(n, n\k)); \\ Michel Marcus, Jun 05 2025
    
  • Python
    from math import gcd
    def A384628(n):
        c, j = (n<<1)+1, 2
        k1 = n//j
        while k1>1:
            j2 = n//k1+1
            c += (j2-j)*gcd(n,k1)
            j, k1 = j2, n//j2
        return c-j # Chai Wah Wu, Jun 17 2025

Formula

For p prime: a(p) = 2*p - 1.

A081001 n is in the sequence if and only if it does not rank among the top n positive integers in centrality (cf. A080997 for fuller explanation of this concept).

Original entry on oeis.org

5, 7, 9, 11, 13, 17, 19, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 116, 118, 119
Offset: 1

Views

Author

Matthew Vandermast, Mar 02 2003

Keywords

Comments

Complement of A081000.

Crossrefs

Cf. A080997, A080998, also A081028 for centrality ranks of primes (all of which are members of this sequence except 2 and 3).

Formula

Formula for the centrality of n: A018804(n)/n^2 (see also A080997).

A081028 Numbers n such that n-th term of A080997 is prime; a(n) is ranking of n-th prime number among the positive integers in terms of centrality (cf. A080997 for explanation of this concept).

Original entry on oeis.org

2, 3, 6, 10, 18, 20, 25, 33, 40, 53, 56, 69, 79, 89, 95, 108
Offset: 1

Views

Author

Matthew Vandermast, Mar 02 2003

Keywords

Comments

Let p(n) be the n-th prime. In order for the centrality rankings of all numbers from 1 to p(n) to be known, it is necessary for the numbers that occupy all of the ranking positions from 1 to a(n) to be determined.

Crossrefs

Formula

Formula for centrality of n: A018804(n)/n^2 (see also A080997).

A081029 Highly central numbers: numbers having a centrality higher than that of any larger number.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 15, 18, 20, 24, 30, 36, 40, 42, 48, 60, 72, 84, 90, 120, 126, 144, 180, 210, 240
Offset: 1

Views

Author

Matthew Vandermast, Mar 02 2003

Keywords

Comments

A subset of A081000.

Crossrefs

Cf. A080997, A080998 for centrality rankings of the positive integers.

Formula

Formula for centrality of n: A018804(n)/n^2 (cf. A080997 for fuller description of this concept).

A234307 a(n) = Sum_{i=1..n} gcd(2*n-i, i).

Original entry on oeis.org

1, 3, 6, 8, 11, 17, 16, 20, 27, 31, 26, 44, 31, 45, 60, 48, 41, 75, 46, 80, 87, 73, 56, 108, 85, 87, 108, 116, 71, 165, 76, 112, 141, 115, 158, 192, 91, 129, 168, 196, 101, 239, 106, 188, 261, 157, 116, 256, 175, 235, 222, 224, 131, 297, 256, 284, 249, 199
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 22 2013

Keywords

Comments

Sum of the GCD's of the smallest and largest parts in the partitions of 2n into exactly two parts.

Examples

			a(6) = 17; the partitions of 2(6) = 12 into two parts are: (11,1),(10,2),(9,3),(8,4),(7,5),(6,6). Then a(6) = gcd(11,1) + gcd(10,2) + gcd(9,3) + gcd(8,4) + gcd(7,5) + gcd(6,6) = 1 + 2 + 3 + 4 + 1 + 6 = 17.
		

Crossrefs

Cf. A001105 (sum of parts), A002378 (differences of parts).

Programs

  • Maple
    A234307:=n->add( gcd(2*n-i, i), i=1..n); seq(A234307(n), n=1..100);
  • Mathematica
    Table[Sum[GCD[2n - i, i], {i, n}], {n, 100}]
    f[p_, e_] := (e*(p - 1)/p + 1)*p^e; a[n_] := (Times @@ f @@@ FactorInteger[2*n] - n)/2; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
  • PARI
    a(n) = sum(i=1, n, gcd(i, 2*n-i)); \\ Michel Marcus, Dec 23 2013
    
  • PARI
    a(n) = {my(f = factor(2*n)); (prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; p^(e-1)*(p+e*(p-1))) - n)/2;} \\ Amiram Eldar, Mar 30 2024

Formula

a(n) = Sum_{i=1..n} gcd(2*n-i, i).
a(n) = (A018804(2*n)-n)/2. - Sebastian Karlsson, Oct 03 2021
Conjecture: a(n) = (1/4)*Sum_{k = 1..4*n} (-1)^k *gcd(k, 8*n). - Peter Bala, Jan 01 2024
Sum_{k=1..n} a(k) ~ (Pi^2/4)*n^2 * (log(n) + 2*gamma - 1/2 + log(2)/6 - Pi^2/16 - zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). - Amiram Eldar, Mar 30 2024

A321294 a(n) = Sum_{d|n} mu(n/d)*d*sigma_n(d).

Original entry on oeis.org

1, 9, 83, 1058, 15629, 282381, 5764807, 134480900, 3486902505, 100048836321, 3138428376731, 107006403495850, 3937376385699301, 155572843119518781, 6568408661060858767, 295150157013526773768, 14063084452067724991025, 708236697425777157039381
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[n/d] d DivisorSigma[n, d], {d, Divisors[n]}], {n, 18}]
    Table[Sum[EulerPhi[n/d] d^(n + 1), {d, Divisors[n]}], {n, 18}]
    Table[Sum[GCD[n, k]^(n + 1), {k, n}], {n, 18}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, n)); \\ Michel Marcus, Nov 03 2018
    
  • Python
    from sympy import totient, divisors
    def A321294(n):
        return sum(totient(d)*(n//d)**(n+1) for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020

Formula

a(n) = [x^n] Sum_{i>=1} Sum_{j>=1} mu(i)*j^(n+1)*x^(i*j)/(1 - x^(i*j))^2.
a(n) = Sum_{d|n} phi(n/d)*d^(n+1).
a(n) = Sum_{k=1..n} gcd(n,k)^(n+1).
a(n) ~ n^(n+1). - Vaclav Kotesovec, Nov 02 2018
Previous Showing 91-100 of 165 results. Next