cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A066961 Numbers k such that sigma(k) divides sigma(sigma(k)).

Original entry on oeis.org

1, 5, 12, 54, 56, 87, 95, 276, 308, 427, 429, 446, 455, 501, 581, 611, 9120, 9180, 9504, 9720, 9960, 10296, 10620, 10740, 10824, 11070, 11310, 11480, 11484, 11556, 11628, 11748, 11934, 11960, 12024, 12036, 12072, 12084, 12376, 12460, 12510, 12570
Offset: 1

Views

Author

Benoit Cloitre, Jan 26 2002

Keywords

Comments

Is this sequence finite?
These are numbers k such that sigma(k) is a multiply-perfect number (A007691). - Ivan N. Ianakiev, Sep 13 2016

Examples

			12 is in the sequence since sigma(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28 divides sigma(28) = 1 + 2 + 4 + 7 + 14 + 28 = 56. - _Michael B. Porter_, Sep 22 2016
		

Crossrefs

Subsequences: A323653 (intersection with A007691, or equally, with A019278), A353365 (where the quotient is a power of 2).

Programs

  • Magma
    [n: n in [1..13000] | (SumOfDivisors(SumOfDivisors(n)) mod SumOfDivisors(n) eq 0)]; // Vincenzo Librandi, Sep 13 2016
  • Maple
    with(numtheory): A066961:=n->`if`(sigma(sigma(n)) mod sigma(n) = 0, n, NULL): seq(A066961(n), n=1..2*10^4); # Wesley Ivan Hurt, Sep 22 2016
  • Mathematica
    Select[Range[30000], Divisible[DivisorSigma[1, DivisorSigma[1, #]], DivisorSigma[1, #]] &] (* Ivan N. Ianakiev, Sep 13 2016 *)
  • PARI
    isok(n) = my(s=sigma(n)); s && ((sigma(s) % s) == 0); \\ Michel Marcus, Sep 17 2016
    

Extensions

More terms from Lior Manor, Feb 06 2002

A272930 a(n) is the least k such that sigma(sigma(k)) = n*k, where sigma(n) is the sum of the divisors of n, or 0 if no such k exists.

Original entry on oeis.org

1, 2, 8, 15
Offset: 1

Views

Author

Keywords

Comments

If a(5) is not zero, it exceeds 5*10^11 (see A098223). Likewise for a(17).
a(6) to a(16) are 42, 24, 60, 168, 480, 4404480, 2200380, 57120, 217728, 1058148, 7526400. a(18) is 39352320.
Is a(n) in fact nonzero for every positive n? - Franklin T. Adams-Watters, Jan 22 2019 [who previously conjectured that it is]
a(19) to a(26) are 312792480, 1505806848, 341543854080, 83825280, 13460388480, 8530704000, 58350015360, 284430182400. - Michel Marcus, May 18 2016
From Michel Marcus, May 18 2016; Jul 19 2016, Aug 23 2016, Sep 06 2016: (Start)
a(17) <= 336421458837032140800;
a(27) <= 4641476998878720;
a(28) <= 23479734980782080;
a(29) <= 4670834235654671884800;
a(30) <= 7526652811748265000960;
a(31) <= 45781120625942782080;
a(32) <= 242094947364010540800;
a(33) <= 216462850095065333760000;
a(34) <= 2366077977040955880819916800;
a(35) <= 8076837429313362044375040000;
a(36) <= 2634106558176405916291008921600;
a(37) <= 299500004890186577026355605378405509365760000000;
a(38) <= 45103591381041833364829469933568000. (End)

Examples

			sigma(8) = 15. sigma(15) = 24 = 3*8. Since this does not work for any value smaller than 8, a(3) = 8.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:=proc(n) local k :
    for k while sigma(sigma(k))<>n*k do od : k end: # Robert FERREOL, Apr 11 2018
  • Mathematica
    Table[SelectFirst[Range[10^2], Nest[DivisorSigma[1, #] &, #, 2] == n # &], {n, 4}] (* Michael De Vlieger, May 11 2016, Version 10 *)
  • PARI
    a(n)=my(r=1);while(sigma(sigma(r))!=n*r,r++);r \\ works only if a(n) is not zero.

A318060 a(n) is the denominator of sigma(sigma(n))/n.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 9, 10, 11, 3, 13, 7, 1, 1, 17, 9, 19, 5, 1, 22, 23, 1, 25, 13, 3, 7, 29, 2, 31, 4, 33, 17, 35, 9, 37, 19, 13, 20, 41, 1, 43, 11, 15, 46, 47, 3, 49, 25, 17, 52, 53, 3, 11, 7, 19, 29, 59, 1, 61, 31, 3, 1, 65, 66, 67, 17, 23, 70
Offset: 1

Views

Author

Michel Marcus, Aug 14 2018

Keywords

Examples

			For n=2, sigma(sigma(n)) = 4, so a(2) = 1.
		

Crossrefs

Cf. A000203 (sigma), A051027.
Cf. A019278 (where a(n) = 1), A318059 (numerator).

Programs

  • Maple
    seq(denom((numtheory:-sigma@@2)(n)/n),n=1..200); # Robert Israel, Aug 15 2018
  • Mathematica
    Table[(DivisorSigma[1,DivisorSigma[1,n]])/n,{n,70}]//Denominator (* Harvey P. Dale, Mar 30 2023 *)
  • PARI
    a(n) = denominator(sigma(sigma(n))/n);

A019292 Let sigma_m (n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives the (3,k)-perfect numbers.

Original entry on oeis.org

1, 12, 14, 24, 52, 98, 156, 294, 684, 910, 1368, 1440, 4480, 4788, 5460, 5840, 6882, 7616, 9114, 14592, 18288, 22848, 32704, 40880, 52416, 53760, 54864, 56448, 60960, 65472, 94860, 120960, 122640, 169164, 185535, 186368, 194432, 196137, 201872, 208026, 286160
Offset: 1

Views

Author

Keywords

Comments

Currently, up to k=50, the least integers to be (3,k)-perfect numbers are: 1, ?, ?, ?, 52, 98, ?, ?, ?, 12, ?, 14, ?, 5840, 7616, 294, ?, 201872, 169164, 24, 684, ?, ?, 910, ?, 40880, 60960, 4480, ?, 4788, 316160, 185535, 3138192, 1440, 186368, 5460, ?, 208026, 194432, 1454544, 481057305600, 26873600, 13225790247247872, 1937376, 10905024, ?, ?, 94860, ?, 683956224. - Michel Marcus, Jun 04 2017

Examples

			14 is a term because applying sigma three times we see that 14 -> 24 -> 60 -> 168, and 168 = 12*14. So 14 is a (3,12)-perfect number. - _N. J. A. Sloane_, May 29 2017
		

Crossrefs

Cf. A019278 ((2,k)-perfect numbers), A019293.

Programs

  • PARI
    isok(n) = denominator(sigma(sigma(sigma(n)))/n) == 1; \\ Michel Marcus, Jan 02 2017

Extensions

More terms from Michel Marcus, Jan 02 2017

A019293 Let sigma_m (n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives the (4,k)-perfect numbers.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 26, 32, 39, 42, 60, 65, 72, 84, 96, 160, 182, 336, 455, 512, 672, 896, 960, 992, 1023, 1280, 1536, 1848, 2040, 2688, 4092, 5472, 5920, 7808, 7936, 10416, 11934, 16352, 16380, 18720, 20384, 21824, 23424, 24564, 29127, 30240, 33792, 36720, 41440
Offset: 1

Views

Author

Keywords

Comments

Similarly to A019278, 2 and sigma(2) are both terms, and this can happen also for further iterations of sigma on known terms, thus providing new terms outside the current known range. - Michel Marcus, May 01 2017
Also it occurs that many divisors of A019278 are terms of this sequence. - Michel Marcus, May 28 2017

Examples

			10 is a term because applying sigma four times we see that 10 -> 18 -> 39 -> 168 -> 120, and 120 = 12*10. So 10 is a (4,12)-perfect number.
		

Crossrefs

Programs

  • PARI
    isok(n) = denominator(sigma(sigma(sigma(sigma(n))))/n) == 1; \\ Michel Marcus, Apr 29 2017

Extensions

Corrected by Michel Marcus, Apr 29 2017

A318175 Numbers m such that A188999(A188999(m)) = k*m for some k where A188999 is the bi-unitary sigma function.

Original entry on oeis.org

1, 2, 8, 9, 10, 15, 18, 21, 24, 30, 42, 60, 144, 160, 168, 240, 270, 288, 324, 480, 512, 630, 648, 960, 1023, 1200, 1404, 1428, 1536, 2046, 2400, 2808, 2856, 2880, 3276, 3570, 4092, 4320, 4608, 6552, 8925, 10080, 10368, 10752, 11550, 13824, 14280, 14976, 15345, 16368, 17850
Offset: 1

Views

Author

Michel Marcus, Aug 20 2018

Keywords

Comments

As in A019278, here there are many instances where if x is a term, then A188999(x) is also a term.
Additionally, there exist longer chains of 3 or 4 elements; e.g.,
- 8 (3), 15 (4), 24 (5), 60 (6);
- 9 (2), 10 (3), 18 (4), 30 (5);
- 512 (3), 1023 (4), 1536 (5), 4092 (6);
- 8925 (4), 14976 (5), 35700 (6);
- 219969739395000 (16), 899826278400000 (17), 3519515830320000 (18).

Examples

			For m=2, A188999(2) = 3 and A188999(3) = 4, so 2 is a term with k=2.
For m=9, A188999(9) = 10 and A188999(10) = 18, so 9 is a term with k=2.
		

Crossrefs

Cf. A188999 (bi-unitary sigma).
Cf. A019278 (analog for sigma), A318182 (analog for infinitary sigma).

Programs

  • Mathematica
    bsigma[n_] := If[n==1, 1, Product[{p, e} = pe; If[OddQ[e], (p^(e+1)-1)/(p-1), ((p^(e+1)-1)/(p-1)-p^(e/2))], {pe, FactorInteger[n]}]];
    Reap[For[m = 1, m < 20000, m++, If[Divisible[bsigma @ bsigma @ m, m], Sow[m]]]][[2, 1]] (* Jean-François Alcover, Sep 22 2018 *)
  • PARI
    a188999(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f); }
    isok(n) = frac(a188999(a188999(n))/n) == 0;

A098221 a(n) is the smallest number x such that floor(sigma(sigma(x))/x) = n or the A098219(x) quotient equals n.

Original entry on oeis.org

1, 2, 8, 6, 40, 30, 24, 60, 120, 480, 540, 1560, 2520, 10920, 27720, 30240, 191520, 524160, 360360, 3243240, 5765760, 28828800, 109549440, 438197760, 766846080, 3834230400, 9081072000, 32974381440, 147516969600, 880887047040, 2802822422400
Offset: 1

Views

Author

Labos Elemer, Oct 25 2004

Keywords

Comments

a(30) <= 880887047040. a(31) <= 2802822422400. - Donovan Johnson, Feb 16 2013

Examples

			n = 10: a(10) = 480 because floor(sigma(sigma(480))/480) = floor(sigma(1512)/480) = floor(4800/480) = 4800/480 = n = 10.
		

Crossrefs

Programs

  • Mathematica
    t=Table[0, {100}];Do[s=g[n];If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 1000000}];t

Formula

a(n) = Min{x;floor(A051027(x)/x)=n}.

Extensions

a(20)-a(26) from Donovan Johnson, Dec 29 2008
a(27)-a(29) from Donovan Johnson, Feb 16 2013
a(30)-a(31) from Giovanni Resta, Feb 27 2020

A098223 Integer quotients when sigma(sigma(x))/x is an integer.

Original entry on oeis.org

1, 2, 2, 3, 4, 2, 3, 7, 6, 8, 2, 6, 6, 9, 8, 6, 10, 10, 3, 8, 4, 6, 7, 8, 2, 9, 10, 8, 4, 10, 10, 7, 13, 8, 8, 8, 2, 6, 8, 14, 2, 9, 7, 8, 6, 9, 8, 13, 8, 15, 14, 6, 9, 9, 8, 10, 12, 14, 13, 8, 8, 11, 6, 14, 16, 12, 14, 12, 16, 15, 12, 18, 16, 11, 8, 22
Offset: 1

Views

Author

Labos Elemer, Oct 25 2004

Keywords

Comments

Below n=5x10^11, q=5 and 17 quotients do not appear; smallest numbers providing integer quotients = 1, 2, 3, 4,..., 16,... are as follows: 1, 2, 8, 15, ?, 42, 24, 60, 168, 480, 57669920, 2200380, 57120, 217278, 1058148, 7526400, ... - updated by Jud McCranie, Feb 08 2012
The above sequence is now A272930. - Franklin T. Adams-Watters, May 11 2016
See A019278 for the actual numbers x such that x | sigma(sigma(x)). - M. F. Hasler, Jul 03 2016

Crossrefs

Programs

  • Maple
    with(numtheory): A098223:=n->`if`(sigma(sigma(n)) mod n = 0, sigma(sigma(n))/n, NULL): seq(A098223(n), n=1..10^5); # Wesley Ivan Hurt, Oct 10 2014
  • Mathematica
    Select[DivisorSigma[1, DivisorSigma[1, #]]/# &@ Range[10^6], IntegerQ] (* Michael De Vlieger, May 11 2016 *)
  • PARI
    for(n=1,1e7, sigma(sigma(n))%n||print1(sigma(sigma(n))/n",")) \\ M. F. Hasler, Jul 03 2016

Formula

In order of appearance the sigma(sigma(A019278(n)))/A019278(n) quotients which are by definition integers.

A330598 Numbers k such that the denominator of sigma(sigma(k))/k is equal to 2.

Original entry on oeis.org

30, 2046, 245760, 301056, 450560, 1171456, 1351680, 3514368, 14515200, 16760832, 19611648, 77220864, 159373824, 357291648, 391444480, 477216768, 555714432, 754928640, 765414240, 1006602240, 1761500160, 2330913312, 4314834944, 8369053056, 20449394784, 37949317120
Offset: 1

Views

Author

Michel Marcus, Dec 19 2019

Keywords

Comments

Although the definition here is similar to the one in A019278, it appears that this sequence does not have the same nice features as A019278.
Otherwise said: sigma(sigma(k))/k is half-integer, or: sigma(sigma(k)) is an odd multiple of k/2. This also implies that all terms are even. - M. F. Hasler, Jan 06 2020

Examples

			sigma(sigma(30))/30 = sigma(72)/30 = 195/30 = 13/2 so 30 is a term.
		

Crossrefs

Cf. A019278 (denominator is 1), A051027 (sigma(sigma)).
Cf. A000203 (sigma), A159907 (hemiperfect numbers).

Programs

  • PARI
    isok(n) = denominator(sigma(sigma(n))/n) == 2;

Extensions

a(22)-a(26) from Giovanni Resta, Dec 20 2019

A318182 Numbers m such that A049417(A049417(m)) = k*m for some k where A049417 is the infinitary sigma function.

Original entry on oeis.org

1, 2, 8, 9, 10, 15, 18, 24, 30, 60, 720, 1020, 4080, 8925, 14688, 14976, 16728, 17850, 35700, 36720, 37440, 66912, 71400, 285600, 308448, 381888, 428400, 602208, 636480, 763776, 856800, 1321920, 1505520, 3011040, 3084480, 21679488, 22276800, 30844800
Offset: 1

Views

Author

Michel Marcus, Aug 20 2018

Keywords

Comments

a(86) > 3*10^11. All the prime factors of the first 85 terms belong to the set {2, 3, 5, 7, 11, 13, 17, 41, 43, 257}. - Giovanni Resta, Aug 25 2018
Like in A019278, here there are many instances where if x is a term, then A049417(x) is also a term.
Additionally, there exist longer chains of 3 or 4 elements like:
- 8 (3), 15 (4), 24 (5), 60 (6);
- 9 (2), 10 (3), 18 (4), 30 (5);
- 31615920 (4), 50585472 (5), 126463680 (6), 252927360 (12);
- 963407296051200 (16), 3134896756992000 (17), 15414516736819200 (18);
- 3541951043592192 (5), 8854877608980480 (6), 17709755217960960 (12), 53129265653882880 (20);
- 4829933241262080 (11), 17709755217960960 (12), 53129265653882880 (20);
7871002319093760 (9), 26564632826941440 (10), 70839020871843840 (13), 265646328269414400 (14).

Crossrefs

Cf. A049417 (infinitary sigma).
Cf. A019278 (analog for sigma), A318175 (analog for bi-unitary sigma).

Programs

  • PARI
    a049417(n) = {my(b, f=factorint(n)); prod(k=1, #f[, 2], b = binary(f[k, 2]); prod(j=1, #b, if(b[j], 1+f[k, 1]^(2^(#b-j)), 1)));}
    isok(n) = frac(a049417(a049417(n))/n) == 0;

Extensions

More terms from Giovanni Resta, Aug 25 2018
Previous Showing 21-30 of 43 results. Next