cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A019632 Decimal expansion of Pi*e/24.

Original entry on oeis.org

3, 5, 5, 8, 2, 2, 2, 5, 9, 2, 7, 8, 0, 6, 5, 2, 9, 4, 3, 9, 4, 3, 1, 4, 6, 1, 9, 5, 6, 4, 4, 4, 0, 6, 0, 3, 9, 5, 9, 7, 8, 7, 0, 2, 2, 3, 2, 3, 5, 4, 6, 4, 5, 6, 7, 4, 4, 9, 8, 3, 3, 8, 0, 4, 2, 4, 1, 3, 4, 5, 2, 5, 4, 6, 4, 8, 8, 8, 7, 8, 3, 6, 4, 8, 8, 5, 6, 8, 2, 7, 9, 0, 4, 6, 0, 3, 0, 8, 0
Offset: 0

Views

Author

Keywords

Examples

			0.355822259278065294394314619564440603959787...
		

Crossrefs

Cf. A019609 (e*Pi).

Programs

  • Magma
    C := ComplexField(); Pi(C)*Exp(1)/24; // G. C. Greubel, Jan 28 2018
  • Mathematica
    RealDigits[Pi*E/24, 10, 50][[1]] (* G. C. Greubel, Jan 28 2018 *)
  • PARI
    Pi*exp(1)/24 \\ G. C. Greubel, Jan 28 2018
    

A096408 Decimal expansion of 1/(Pi*e).

Original entry on oeis.org

1, 1, 7, 0, 9, 9, 6, 6, 3, 0, 4, 8, 6, 3, 8, 3, 2, 1, 3, 8, 0, 4, 8, 4, 5, 3, 6, 9, 3, 3, 3, 3, 3, 7, 4, 4, 4, 2, 7, 8, 2, 9, 8, 4, 2, 5, 5, 2, 1, 2, 2, 8, 9, 7, 7, 5, 3, 9, 4, 4, 5, 2, 1, 9, 4, 0, 3, 2, 5, 6, 9, 3, 5, 3, 7, 4, 3, 9, 1, 3, 0, 7, 6, 6, 0, 3, 7, 5, 2, 2, 0, 1, 8, 1, 1, 6, 7, 2, 8, 6, 3, 1, 3, 1, 0
Offset: 0

Author

Mohammad K. Azarian, Aug 07 2004

Keywords

Examples

			0.1170996630486383213804845369333337444
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/(Pi E),10,120][[1]] (* Harvey P. Dale, Jul 22 2012 *)

Extensions

Definition corrected by N. J. A. Sloane, Nov 17 2006

A096409 Decimal expansion of (Pi*e)^(-2).

Original entry on oeis.org

0, 1, 3, 7, 1, 2, 3, 3, 1, 0, 8, 6, 1, 0, 4, 6, 3, 1, 0, 8, 7, 4, 4, 6, 5, 5, 4, 4, 0, 9, 9, 2, 0, 1, 6, 9, 1, 0, 8, 6, 2, 2, 1, 7, 2, 1, 3, 6, 9, 9, 2, 2, 1, 1, 1, 8, 8, 6, 4, 2, 6, 7, 1, 0, 9, 3, 0, 9, 8, 2, 2, 1, 8, 0, 0, 6, 1, 6, 1, 8, 8, 0, 4, 1, 2, 9, 9, 0, 4, 5, 0, 4, 4, 4, 6, 6, 3, 8, 9, 8, 9, 6, 8, 1, 1
Offset: 0

Author

Mohammad K. Azarian, Aug 07 2004

Keywords

Examples

			0.0137123310861046310874465544...
		

Crossrefs

Programs

A121283 a(n) = floor(n*Pi*e).

Original entry on oeis.org

0, 8, 17, 25, 34, 42, 51, 59, 68, 76, 85, 93, 102, 111, 119, 128, 136, 145, 153, 162, 170, 179, 187, 196, 204, 213, 222, 230, 239, 247, 256, 264, 273, 281, 290, 298, 307, 315, 324, 333, 341, 350, 358, 367, 375, 384, 392, 401, 409, 418, 426, 435, 444, 452, 461
Offset: 0

Author

Mohammad K. Azarian, Aug 24 2006

Keywords

Crossrefs

Programs

Extensions

Offset corrected by Mohammad K. Azarian, Nov 20 2008
Changed offset from 1 to 0 by Vincenzo Librandi, Feb 22 2013

A287596 a(n) is the denominator of r(n), where r(n) = r(n-1) + r(n-2)/(2*(n-1)) with r(0) = 0, r(1) = 1.

Original entry on oeis.org

1, 1, 1, 4, 12, 96, 480, 5760, 8064, 645120, 5806080, 116121600, 1277337600, 6131220480, 398529331200, 11158821273600, 167382319104000, 5356234211328000, 18211196318515200, 3278015337332736000, 62282291409321984000, 146546568021934080000, 52317124783830466560000
Offset: 0

Author

Terry D. Grant, May 27 2017

Keywords

Comments

The numerators are in A286307.
From Wolfdieter Lang, Jun 07 2017: (Start)
According to a Benoit Cloitre Aug 14 2003 formula in A019609 lim_{n-> oo} 4*n/r(n-1)^2 = Pi*e.
r(n+1) seems to be A268363(n) = 2^floor(n/2) * n!, n >= 0, up to n = 7, 12, 17, 20, 22, 27, 31, 32, 34,... (End)

Crossrefs

Programs

  • Mathematica
    Denominator[RecurrenceTable[{r[n] == r[n - 1] + r[n - 2]/(2 (n - 1)), r[0] == 0, r[1] == 1}, r, {n, 0, 22}]]
  • PARI
    a(n) = if(n < 2, return(n)); n++; my(v=vector(n)); v[1]=0; v[2] = 1; for(i = 3, n, v[i] = v[i-1] + v[i-2]/(2*i - 4)); denominator(v[#v])

Formula

a(n) = denominator(r(n)), where r(n) = r(n-1) + r(n-2)/2*(n-2) with r(0)=0 and r(1)=1.

A335027 Decimal expansion of Pi*(e-1)/2.

Original entry on oeis.org

2, 6, 9, 9, 0, 7, 0, 7, 8, 4, 5, 4, 1, 8, 8, 6, 9, 1, 3, 5, 0, 0, 4, 5, 3, 7, 4, 3, 1, 3, 3, 5, 3, 5, 8, 0, 5, 4, 1, 8, 8, 5, 9, 5, 6, 8, 1, 9, 5, 0, 0, 4, 5, 7, 0, 4, 5, 2, 3, 2, 8, 2, 6, 8, 9, 3, 5, 7, 0, 6, 1, 0, 2, 4, 3, 5, 5, 6, 0, 9, 0, 4, 4, 7, 2, 2, 6
Offset: 1

Author

Amiram Eldar, May 20 2020

Keywords

Comments

The value of an integral (see formula) first calculated by Cauchy in 1825 (with an error that was corrected in 1826).
This integral appears in the forward to Vălean's book, written by Paul J. Nahin.

Examples

			2.69907078454188691350045374313353580541885956819500...
		

Crossrefs

Cf. A000796 (Pi), A001113 (e), A019609 (Pi*e), A019610(Pi*e/2), A019669 (Pi/2), A335028.

Programs

  • Mathematica
    RealDigits[Pi*(E-1)/2, 10, 100][[1]]
  • PARI
    Pi*(exp(1)-1)/2 \\ Michel Marcus, May 20 2020

Formula

Equals Integral_{x=0..oo} (exp(cos(x)) * sin(sin(x))/x) * dx (Cauchy, 1825-26).
Equals Integral_{x=0..oo} (exp(cos(x)) * sin(x) * sin(sin(x))/x^2) * dx (Vălean, 2019).
Equals A019610 - A019669.

A335028 Decimal expansion of Pi*(exp(1/e) - 1)/2.

Original entry on oeis.org

6, 9, 8, 4, 8, 2, 6, 4, 2, 7, 1, 7, 8, 8, 4, 2, 7, 2, 2, 6, 7, 2, 3, 0, 3, 5, 8, 4, 9, 7, 7, 1, 2, 4, 4, 4, 5, 6, 2, 8, 4, 8, 3, 6, 6, 9, 3, 2, 9, 2, 9, 7, 9, 3, 6, 9, 9, 3, 7, 2, 3, 6, 6, 2, 3, 3, 4, 5, 9, 0, 3, 0, 1, 2, 5, 4, 3, 6, 9, 0, 4, 3, 0, 0, 6, 9, 8
Offset: 0

Author

Amiram Eldar, May 20 2020

Keywords

Comments

The value of an integral (see formula) first calculated by Cauchy in 1825 (with an error that was corrected in 1826).

Examples

			0.69848264271788427226723035849771244456284836693292...
		

Crossrefs

Cf. A000796 (Pi), A001113 (e), A019609 (Pi*e), A019610(Pi*e/2), A073229 (e^(1/e)), A335027.

Programs

  • Mathematica
    RealDigits[Pi*(Exp[1/E] - 1)/2, 10, 100][[1]]
  • PARI
    Pi*(exp(1/exp(1)) - 1)/2 \\ Michel Marcus, May 20 2020

Formula

Equals Integral_{x=0..oo} (exp(cos(x)) * sin(sin(x)) * x /(x^2 + 1)) * dx.

A352396 Integer part of e[n]Pi, where [n] indicates hyper-n, e = 2.718281828459045..., and Pi = 3.141592653589793... (using H. Kneser's proposal for n > 3).

Original entry on oeis.org

4, 5, 8, 23, 37149801960
Offset: 0

Author

Marco Ripà, Apr 08 2022

Keywords

Comments

The first term of this sequence is given by floor(e[0]Pi) = floor(Pi + 1) = floor(4.14159) = 4, which is the integer part of "e zeration Pi". In general, zeration is not a commutative arithmetic operation, while floor(e[1]Pi) = floor(Pi + e) = floor(5.85987) = 5 and floor(e[2]Pi) = floor(Pi * e) = floor(8.53973) = 8 hold since e[1]Pi = Pi[1]e and e[2]Pi = Pi[2]e.
If n = 3, then floor(e[3]Pi) = floor(e^Pi) = floor(23.14069) = 23 (if n > 2, then hyper-n is not characterized by the commutative property anymore, even if we can find fascinating examples as 4[3]2 = 2[3]4 = 16).
Now, tetration can be extended to complex bases as described in the Paulsen reference and the corresponding term of the present sequence can be found using his online calculator (see Links), so we have that floor(e[4]Pi) = floor(37149801960.55) = 37149801960. An easy proof that 37149801960.55999 > e^^Pi > 37149801960.55 follows from the chain of inequalities 37149801960.5569855999 > |37149801960.5569855 + 5.9249049902894650649*10^(-11)| > e^^Pi > |37149801960.556985498 + 5.9249049902894650647*10^(-11)| > 37149801960.55.
As far as we know, it has not been proved if e^^Pi is an irrational number (or not).

Examples

			For n = 3, a(3) = floor(e[3]Pi) = floor(e^Pi) = 15.
		

Formula

a(n) = floor(e[n]Pi).

A092138 Decimal expansion of (Pi*e)^3.

Original entry on oeis.org

6, 2, 2, 7, 7, 7, 7, 1, 5, 1, 1, 2, 7, 3, 4, 7, 8, 2, 7, 4, 3, 9, 8, 6, 6, 8, 2, 5, 4, 2, 8, 0, 8, 3, 0, 6, 0, 9, 8, 9, 6, 8, 4, 1, 4, 3, 7, 5, 8, 1, 7, 5, 3, 4, 9, 5, 1, 6, 7, 0, 7, 5, 3, 8, 2, 2, 4, 7, 4, 8, 8, 3, 3, 1, 5, 1, 7, 5, 6, 5, 9, 4, 3, 1, 1, 0, 2, 5, 1, 8, 6, 2, 2, 6, 6, 9, 1, 0, 5, 0
Offset: 3

Author

Mohammad K. Azarian, Mar 30 2004

Keywords

Examples

			622.777715112...
		

Crossrefs

Cf. A019609 (Pi*e), A092036 ((Pi*e)^2).

Programs

A092140 Decimal expansion of (Pi*e)^4.

Original entry on oeis.org

5, 3, 1, 8, 3, 5, 6, 1, 6, 6, 8, 6, 6, 6, 7, 0, 3, 7, 0, 2, 1, 3, 1, 3, 8, 2, 0, 0, 7, 3, 4, 0, 8, 6, 8, 8, 4, 4, 0, 2, 8, 8, 3, 9, 3, 0, 4, 9, 0, 7, 5, 1, 9, 0, 6, 3, 1, 4, 8, 6, 8, 7, 9, 2, 1, 4, 2, 1, 0, 5, 9, 2, 9, 7, 1, 6, 4, 9, 3, 5, 9, 1, 2, 7, 9, 9, 8, 4, 2, 9, 6, 6, 6, 3, 3, 7, 8, 9, 4, 9
Offset: 4

Author

Mohammad K. Azarian, Mar 30 2004

Keywords

Examples

			5318.3561668666...
		

Crossrefs

Cf. A019609 (Pi*e), A092036 ((Pi*e)^2).

Programs

Previous Showing 21-30 of 41 results. Next