cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-46 of 46 results.

A358981 Decimal expansion of Pi/3 - sqrt(3)/4.

Original entry on oeis.org

6, 1, 4, 1, 8, 4, 8, 4, 9, 3, 0, 4, 3, 7, 8, 4, 2, 2, 7, 7, 2, 3, 5, 2, 8, 7, 5, 7, 1, 6, 6, 9, 9, 5, 3, 6, 3, 3, 0, 0, 2, 1, 8, 1, 9, 6, 7, 2, 4, 4, 0, 1, 1, 6, 6, 4, 4, 3, 6, 3, 1, 1, 9, 2, 3, 9, 6, 2, 2, 2, 1, 4, 5, 3, 4, 8, 6, 9, 6, 5, 6, 9, 3, 9, 0, 5, 8, 3, 9, 5, 0, 9, 1, 3, 9, 3, 5, 4, 5, 4
Offset: 0

Views

Author

Michal Paulovic, Dec 08 2022

Keywords

Comments

The constant is the area of a circular segment bounded by an arc of 2*Pi/3 radians (120 degrees) of a unit circle and by a chord of length sqrt(3). Three such segments result when an equilateral triangle with side length sqrt(3) is circumscribed by a unit circle. The area of each segment is:
A = (R^2 / 2) * (theta - sin(theta))
A = (1^2 / 2) * (2*Pi/3 - sin(2*Pi/3))
A = (1 / 2) * (2*Pi/3 - sqrt(3)/2)
A = Pi/3 - sqrt(3)/4 = (Pi - 3*sqrt(3)/4) / 3 = 0.61418484...
where Pi (A000796) is the area of the circle, and 3*sqrt(3)/4 (A104954) is the area of the inscribed equilateral triangle.
The sagitta (height) of the circular segment is:
h = R * (1 - cos(theta/2))
h = 1 * (1 - cos(Pi/3))
h = 1 - 1/2 = 0.5 (A020761)

Examples

			0.6141848493043784...
		

Crossrefs

Programs

  • Maple
    evalf(Pi/3-sqrt(3)/4);
  • Mathematica
    RealDigits[Pi/3 - Sqrt[3]/4, 10, 100][[1]]
  • PARI
    Pi/3 - sqrt(3)/4

Formula

Equals A019670 - A120011. - Omar E. Pol, Dec 08 2022
Equals A093731 / 2. - Michal Paulovic, Mar 08 2024

A371858 Decimal expansion of Integral_{x=0..oo} 1 / (1 + x^7) dx.

Original entry on oeis.org

1, 0, 3, 4, 3, 7, 6, 0, 5, 5, 2, 6, 6, 7, 9, 6, 4, 8, 2, 9, 4, 5, 3, 0, 6, 4, 0, 6, 5, 1, 2, 4, 8, 8, 7, 4, 8, 3, 6, 4, 2, 5, 6, 7, 2, 6, 4, 2, 7, 3, 3, 7, 5, 8, 1, 0, 2, 8, 3, 3, 2, 6, 8, 8, 1, 5, 2, 5, 9, 3, 1, 0, 0, 7, 4, 8, 6, 2, 5, 4, 8, 5, 5, 5, 2, 0, 7, 5, 8, 9, 3, 8, 1, 8, 2, 0, 0, 0, 5, 9, 6, 0
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 09 2024

Keywords

Examples

			1.0343760552667964829453064065124887483642567...
		

Crossrefs

Decimal expansion of Integral_{x=0..oo} 1 / (1 + x^k) dx: A019669 (k=2), A248897 (k=3), A093954 (k=4), A352324 (k=5), A019670 (k=6), this sequence (k=7), A352125 (k=8).

Programs

  • Mathematica
    RealDigits[(1/7) Pi Csc[Pi/7], 10, 102][[1]]

Formula

Equals (1/7) * Pi * csc(Pi/7).
Equals A019674 * A121598.
Equals Product_{k>=2} (1 + (-1)^k/A047336(k)). - Amiram Eldar, Nov 22 2024

A070988 Continued fraction for Pi/3.

Original entry on oeis.org

1, 21, 5, 3, 97, 1, 1, 5, 13, 1, 4, 7, 1, 3, 8, 255, 5, 5, 9, 4, 1, 1, 1, 1, 6, 2, 18, 33, 4, 4, 1, 1, 2, 3, 1, 1, 5, 1, 1, 2, 1, 2, 3, 2, 1, 1, 3, 3, 1, 1, 1, 9, 1, 1, 3, 1, 7, 2, 1, 26, 1, 2, 1, 1, 1, 1, 5, 1, 1, 4, 12, 13, 1, 2, 1, 4, 1, 485, 15, 3, 7, 1, 1, 3, 4, 1, 1, 1, 3, 1, 7, 1, 1, 2, 1, 2, 9
Offset: 0

Views

Author

Benoit Cloitre, May 18 2002

Keywords

Crossrefs

Cf. A019670 (decimal expansion).

Programs

Extensions

Offset changed by Andrew Howroyd, Jul 06 2024

A210509 x(n+1) = x(n)*Pi/3 with x(0) = Pi, and a(n) = floor(x(n)).

Original entry on oeis.org

3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 39, 41, 43, 45, 47, 49, 52, 54, 57, 60, 62, 65, 69, 72, 75, 79, 83, 86
Offset: 0

Views

Author

Jon Perry, Jan 25 2013

Keywords

Comments

24 is the first number greater than 3 not in the sequence.
Later output is more separated, for example: 40888572599, 42818413097, 44839337342, 46955644261.

Crossrefs

Cf. A000796 (Pi), A019670 (Pi/3).

Programs

  • JavaScript
    pi=Math.PI;
    x=pi;
    for (i=0;i<600;i++) {x*=pi;x/=3;document.write(Math.floor(x)+", ");}

Formula

x(n+1) = x(n)*Pi/3 with x(0) = Pi, and a(n) = floor(x(n)).

A210962 Decimal expansion of 4*(2 - Pi/3).

Original entry on oeis.org

3, 8, 1, 1, 2, 0, 9, 7, 9, 5, 2, 1, 3, 6, 0, 9, 0, 1, 5, 3, 8, 3, 1, 4, 2, 1, 5, 5, 6, 2, 7, 3, 2, 9, 4, 8, 7, 7, 3, 7, 1, 0, 7, 4, 6, 7, 4, 9, 9, 8, 5, 8, 9, 0, 5, 3, 6, 6, 7, 4, 0, 5, 4, 3, 5, 8, 9, 5, 7, 8, 1, 2, 4, 9, 5, 1, 7, 2, 1, 3, 3, 5, 1, 6, 2, 6, 2
Offset: 1

Views

Author

Omar E. Pol, Aug 03 2012

Keywords

Comments

Volume between a sphere of radius 1 and the circumscribed cube.

Examples

			3.8112097952136090153831...
		

Crossrefs

Programs

Formula

4*(2 - Pi/3) = 8 - 4*Pi/3 = 8 - A019699.

A379531 Decimal expansion of (3*sqrt(6) - 7)*Pi/3.

Original entry on oeis.org

3, 6, 4, 9, 1, 6, 1, 2, 2, 5, 9, 5, 0, 0, 0, 3, 5, 0, 1, 8, 4, 7, 1, 6, 9, 3, 0, 3, 7, 3, 8, 6, 5, 0, 7, 2, 3, 4, 3, 5, 0, 2, 0, 7, 3, 5, 0, 9, 3, 0, 7, 0, 2, 3, 0, 0, 0, 1, 3, 3, 5, 9, 1, 8, 2, 0, 1, 5, 4, 6, 5, 9, 7, 4, 3, 6, 4, 4, 9, 4, 2, 7, 3, 4, 3, 0, 6, 9, 2, 1, 8, 4, 9, 4, 2, 6, 8, 1, 9, 1
Offset: 0

Views

Author

Stefano Spezia, Dec 24 2024

Keywords

Comments

Lower bound to the volume of the Meisser's tetrahedral analog of the Reuleaux triangle.

Examples

			0.3649161225950003501847169303738650723435020735...
		

References

  • G. D. Chakerian and H. Groemer, Convex bodies of constant width, Convexity and Its Applications, ed. P. M. Gruber and J. M. Wills, Birkhäuser, 1983, pp. 49-96; MR85f:52001.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.10, p. 514.

Crossrefs

Programs

  • Mathematica
    RealDigits[(3Sqrt[6]-7)Pi/3,10,100][[1]]
Previous Showing 41-46 of 46 results.