cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 63 results. Next

A331501 Decimal expansion of exp(3/4).

Original entry on oeis.org

2, 1, 1, 7, 0, 0, 0, 0, 1, 6, 6, 1, 2, 6, 7, 4, 6, 6, 8, 5, 4, 5, 3, 6, 9, 8, 1, 9, 8, 3, 7, 0, 9, 5, 6, 1, 0, 1, 3, 4, 4, 9, 1, 5, 8, 4, 7, 0, 2, 4, 0, 3, 4, 2, 1, 7, 7, 9, 1, 3, 3, 0, 3, 0, 8, 1, 0, 9, 8, 4, 5, 3, 3, 3, 6, 4, 0, 1, 2, 8, 2, 0, 0, 0, 2, 7, 9, 1, 5, 6, 0, 2, 6, 6, 6, 1, 5, 7, 9, 8, 2, 1, 8, 8, 8
Offset: 1

Views

Author

Washington Bomfim, Feb 27 2020

Keywords

Comments

Considering graph evolutions (see the Flajolet link) with 2n vertices initially isolated, the probability of the occurrence of an acyclic graph at the critical point n in the uniform model, will be denoted by P(n). In the case of the permutation model, the respective probability will be denoted by Pp(n).
Pp(n) / P(n) ~ exp(3/4) since Pp(n) = A302112(n) / A331505(2n) = A302112(n) / C(C(2n,2), n), and P(n) = A302112(n) * n! * 2^n / (2n)^(2n), Pp(n) / P(n) = (2n)^(2n) / (C(C(2n,2), n) * n! * 2^n), and lim_{n->oo} Pp(n) / P(n) = exp(3/4).

Examples

			2.1170000166126746685453698198370956101344915847024...
		

Crossrefs

Programs

Formula

Equals lim_{n->oo} Pp(n) / P(n) = lim_{n->oo} (2*n)^(2*n) / (binomial(binomial(2n,2), n) * n! * 2^n).
Equals lim_{n->oo} sqrt(n)/A000178(n)^(1/(n*(n+1))) (Giugiuc and Marinescu, 2017). - Amiram Eldar, Apr 12 2022

A379411 a(n) = n + floor(n*s/r) + floor(n*t/r), where r = e^(1/4), s = e^(1/2), t = e^(3/4).

Original entry on oeis.org

3, 7, 10, 15, 19, 22, 26, 31, 34, 38, 43, 46, 50, 54, 58, 62, 66, 70, 74, 77, 81, 86, 89, 93, 98, 101, 105, 109, 113, 117, 121, 125, 129, 133, 136, 141, 145, 148, 153, 156, 160, 164, 168, 172, 176, 180, 184, 188, 191, 196, 200, 203, 208, 212, 215, 219, 223
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2025

Keywords

Comments

This sequence and A379412 and A379413 partition the positive integers; see A184812 for a proof. For each k in A000027, write "a" if k=A379411(n) for some n, "b" if k=A379412(n) for some n, and "c" if k=A379413(n) for some n. Concatenating these letters for k = 1,2,3,... spells the following infinite word:
cbacbcabcacbcbacbcabcacbcabcbcacbacbcabcbcacbacbcabccabcbacbcabccabcbacbcacbacbcabcbcacbacbcabccbacbacbcabccabcbacbcacbcabcbacbcacbcabcabccbacb...

Crossrefs

Programs

  • Mathematica
    r = E^(1/4); s = E^(1/2); t = E^(3/4);
    Table[n + Floor[n*s/r] + Floor[n*t/r], {n, 1, 120}]  (* A379411 *)
    Table[n + Floor[n*r/s] + Floor[n*t/s], {n, 1, 120}]  (* A379412 *)
    Table[n + Floor[n*r/t] + Floor[n*s/t], {n, 1, 120}]  (* A379413 *)

Formula

a(n) = n + floor(n*r) + floor(n*r^2), where r = e^(1/4).

A379413 a(n) = n + floor(n*r/t) + floor(n*s/t), where r = e^(1/4), s = e^(1/2), t = e^(3/4).

Original entry on oeis.org

1, 4, 6, 9, 11, 13, 16, 18, 21, 23, 25, 28, 30, 32, 35, 37, 40, 42, 44, 47, 49, 52, 53, 56, 59, 61, 64, 65, 68, 71, 73, 75, 78, 80, 83, 85, 87, 90, 92, 95, 96, 99, 102, 104, 107, 108, 111, 114, 116, 118, 120, 123, 126, 128, 130, 132, 135, 138, 139, 142, 144
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2025

Keywords

Comments

This sequence and A379411 and A379412 partition the positive integers; see A378142 for a proof.

Crossrefs

Programs

  • Mathematica
    r = E^(1/4); s = E^(1/2); t = E^(3/4);
    Table[n + Floor[n*s/r] + Floor[n*t/r], {n, 1, 120}]  (* A379411 *)
    Table[n + Floor[n*r/s] + Floor[n*t/s], {n, 1, 120}]  (* A379412 *)
    Table[n + Floor[n*r/t] + Floor[n*s/t], {n, 1, 120}]  (* A379413 *)

Formula

a(n) = n + floor(n/r) + floor(n*r^2), where r = e^(1/4).

A092515 Decimal expansion of e^(1/6).

Original entry on oeis.org

1, 1, 8, 1, 3, 6, 0, 4, 1, 2, 8, 6, 5, 6, 4, 5, 9, 8, 0, 3, 0, 5, 1, 1, 2, 1, 5, 2, 5, 0, 7, 1, 8, 4, 3, 2, 7, 8, 3, 0, 1, 8, 9, 3, 1, 0, 8, 3, 8, 9, 6, 3, 7, 9, 7, 8, 5, 6, 1, 9, 4, 2, 8, 0, 2, 2, 6, 4, 5, 5, 2, 8, 5, 5, 9, 2, 2, 9, 7, 4, 5, 6, 6, 2, 3, 6, 6, 9, 7, 3, 8, 5, 0, 4, 4, 2, 7, 6, 3, 1, 9, 1, 7, 7, 2
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 05 2004

Keywords

Comments

e^(1/6) maximizes the value of x^(c/(x^6)) for any real positive constant c, and minimizes for it for a negative constant, on the range x > 0. - A.H.M. Smeets, Aug 16 2018

Examples

			1.18136041286564598030511215250718432783018931083896...
		

Crossrefs

Cf. A001113, A019774, A092727 (reciprocal).

Programs

Formula

Equals lim_{x->0} (sinh(x)/x)^(1/x^2). - Amiram Eldar, Jul 04 2022

A092554 Decimal expansion of e^(-3).

Original entry on oeis.org

0, 4, 9, 7, 8, 7, 0, 6, 8, 3, 6, 7, 8, 6, 3, 9, 4, 2, 9, 7, 9, 3, 4, 2, 4, 1, 5, 6, 5, 0, 0, 6, 1, 7, 7, 6, 6, 3, 1, 6, 9, 9, 5, 9, 2, 1, 8, 8, 4, 2, 3, 2, 1, 5, 5, 6, 7, 6, 2, 7, 7, 2, 7, 6, 0, 6, 0, 6, 0, 6, 6, 7, 7, 3, 0, 1, 9, 9, 5, 5, 0, 1, 5, 4, 0, 5, 4, 2, 4, 4, 2, 3, 6, 6, 3, 3, 3, 4, 4, 5, 2, 6, 4, 0, 1
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 09 2004

Keywords

Examples

			0.049787068367863942979342415650061776631699592188423...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[E^-3, 10, 100, -1]] (* Paolo Xausa, Feb 09 2025 *)
  • PARI
    exp(-3) \\ Michel Marcus, May 10 2022

A092555 Decimal expansion of e^(-4).

Original entry on oeis.org

0, 1, 8, 3, 1, 5, 6, 3, 8, 8, 8, 8, 7, 3, 4, 1, 8, 0, 2, 9, 3, 7, 1, 8, 0, 2, 1, 2, 7, 3, 2, 4, 1, 2, 4, 2, 2, 1, 1, 9, 1, 2, 0, 6, 7, 5, 5, 3, 4, 7, 5, 5, 9, 4, 7, 6, 9, 5, 9, 9, 9, 2, 7, 4, 3, 9, 2, 5, 0, 4, 3, 1, 5, 9, 8, 1, 1, 4, 1, 2, 2, 6, 8, 7, 3, 6, 9, 4, 9, 8, 1, 2, 8, 9, 0, 2, 0, 5, 1, 7, 2, 9, 5, 5, 5
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 09 2004

Keywords

Comments

This is one of Rényi's parking constants. - Alonso del Arte, Dec 28 2013

Examples

			0.0183156388887...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press (2003): 280.

Crossrefs

Cf. A019774, A001113, A068985, A092553 (e^(-2)), A092554 (e^(-3)).

Programs

  • Mathematica
    RealDigits[E^(-4), 10, 100][[1]] (* Alonso del Arte, Dec 28 2013 *)

A092616 Decimal expansion of e^(-1/4).

Original entry on oeis.org

7, 7, 8, 8, 0, 0, 7, 8, 3, 0, 7, 1, 4, 0, 4, 8, 6, 8, 2, 4, 5, 1, 7, 0, 2, 6, 6, 9, 7, 8, 3, 2, 0, 6, 4, 7, 2, 9, 6, 7, 7, 2, 2, 9, 0, 4, 2, 6, 1, 4, 1, 4, 7, 4, 2, 4, 1, 3, 1, 7, 3, 6, 6, 2, 6, 8, 2, 4, 5, 6, 1, 2, 0, 5, 3, 5, 1, 9, 2, 4, 4, 6, 3, 1, 9, 9, 9, 0, 1, 5, 2, 4, 7, 3, 1, 3, 8, 2, 0, 6, 0, 4, 1, 2, 4
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 22 2004

Keywords

Examples

			0.778800783071404
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Surd[E,-4],10,120][[1]] (* Harvey P. Dale, Jul 07 2013 *)
    Limit[Product[(k/n)^(k/n^2), {k, 1, n}], n->Infinity] (* Vaclav Kotesovec, Oct 06 2023 *)

Formula

Equals limit_{n->oo} Product_{k=1..n} (k/n)^(k/n^2). - Vaclav Kotesovec, Oct 06 2023

A092727 Decimal expansion of e^(-1/6).

Original entry on oeis.org

8, 4, 6, 4, 8, 1, 7, 2, 4, 8, 9, 0, 6, 1, 4, 0, 7, 4, 0, 4, 4, 9, 1, 7, 3, 9, 9, 7, 9, 8, 7, 5, 4, 5, 7, 6, 8, 8, 8, 2, 9, 1, 6, 2, 4, 4, 2, 7, 0, 5, 1, 8, 3, 9, 3, 2, 2, 6, 5, 0, 9, 1, 4, 9, 8, 0, 1, 4, 1, 4, 7, 8, 7, 0, 5, 4, 6, 1, 4, 7, 4, 7, 4, 8, 2, 1, 6, 4, 7, 0, 3, 4, 2, 0, 1, 1, 5, 7, 5, 9, 3, 2, 5, 3, 1
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 22 2004

Keywords

Examples

			0.84648172489061407404491739979875457688829162442705...
		

Crossrefs

Cf. A001113, A019774, A068985, A092515 (reciprocal).

Programs

  • Mathematica
    RealDigits[E^-(1/6),10,120][[1]] (* Harvey P. Dale, Jun 18 2012 *)

Formula

Equals lim_{x->0} (sin(x)/x)^(1/x^2). - Amiram Eldar, Jul 04 2022

A143412 Main diagonal of A143410.

Original entry on oeis.org

1, 3, 37, 743, 20841, 751019, 33065677, 1720166223, 103243039057, 7022246822099, 533794001518581, 44845718374382903, 4126339884444745657, 412678834162848948603, 44573440429472131194781, 5170931768652930067543199, 641240112753392800506551457, 84648865815216502596932335523
Offset: 0

Views

Author

Peter Bala, Aug 14 2008

Keywords

Comments

The sequence of convergents of the continued fraction expansion sqrt(e) = 1 + 2/(3 + 1/(12 + 1/(20 + 1/(28 + 1/(36 + ... ))))) begins [1/1, 5/3, 61/37, 1225/743, ...]. The partial denominators are this sequence; the numerators are A065919. - Peter Bala, Jan 02 2020

Crossrefs

Programs

  • Magma
    I:=[1,3]; [n le 2 select I[n] else 4*(2*n -3)*Self(n - 1) + Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jan 03 2016
  • Maple
    a := n -> (-1)^n*add ((-2)^k*(n+k)!/((n-k)!*k!),k = 0..n): seq(a(n),n = 0..16);
    seq(simplify(2^n*KummerU(-n,-2*n,-1/2)), n=0..17); # Peter Luschny, May 10 2022
  • Mathematica
    RecurrenceTable[{ a[n + 2] == 4*(2 n + 3)*a[n + 1] + a[n], a[0] == 1, a[1] == 3}, a, {n, 0, 20}] (* G. C. Greubel, Jan 03 2016 *)
  • PARI
    a(n) = (-1)^n*sum(k=0,n, (-2)^k*(n+k)!/((n-k)!*k!) ); \\ Joerg Arndt, May 17 2013
    

Formula

a(n) = (-1)^n*Sum_{k = 0..n} (-2)^k*(n+k)!/((n-k)!*k!) = (-1)^n*y_n(-4), where y_n(x) denotes the n-th Bessel polynomial.
Recurrence relation: a(0) = 1, a(1) = 3, a(n) = 4*(2*n-1)*a(n-1) + a(n-2) for n >= 2. Sequence A065919 satisfies the same recurrence relation.
sqrt(e) = 1 + 2*Sum_{n >= 0} (-1)^n/(a(n)*a(n+1)) = 1 + 2*(1/(1*3) - 1/(3*37) + 1/(37*743) - ...) (see A019774).
G.f.: 1/Q(0), where Q(k)= 1 + x - 4*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) = (-1)^n * hypergeom([-n,n+1],[],2). - Robert Israel, Jan 03 2016
a(n) ~ 2^(3*n + 1/2) * n^n / exp(n + 1/4). - Vaclav Kotesovec, Jan 02 2020
a(n) is the expectation of U_{2n}(X) where X is a standard Gaussian random variable and U_n is the n-th Chebyshev polynomial of second kind (conjectured). - Benjamin Dadoun, Dec 16 2020
a(n) = 2^n*KummerU(-n, -2*n, -1/2). - Peter Luschny, May 10 2022

A226161 Least positive integer k such that 1 + 1/2 + ... + 1/k > n/2.

Original entry on oeis.org

1, 2, 3, 4, 7, 11, 19, 31, 51, 83, 137, 227, 373, 616, 1015, 1674, 2759, 4550, 7501, 12367, 20390, 33617, 55425, 91380, 150661, 248397, 409538, 675214, 1113239, 1835421, 3026097, 4989191, 8225785, 13562027, 22360003, 36865412, 60780790, 100210581, 165219316
Offset: 1

Views

Author

Clark Kimberling, May 29 2013

Keywords

Comments

Conjecture: a(n+1)/a(n) converges to 1.64872...
The conjecture is correct, a(n+1)/a(n) ~ exp(1/2) (A019774). - Charles R Greathouse IV, Jun 03 2013
Conjecture: a(n) = round(exp(n/2-gamma)) for all n, where gamma is the Euler-Mascheroni constant (see A001620). - Jon E. Schoenfield, Jul 19 2015
The terms up to a(52) contained in the b-file have been obtained by working with quadruple-precision (128 bits) floating point numbers, hence there is a very small probability they are off by 1. - Giovanni Resta, Jul 21 2015
All terms in the b-file are correct. Moreover, the above conjecture that a(n) = round(exp(n/2-gamma)) has been verified for all n in 1..10000. - Jon E. Schoenfield, Jul 22 2015

Examples

			a(5) = 7 because 1 + 1/2 + ... + 1/6 < 5/2 < 1 + 1/2 + ... + 1/6 + 1/7.
		

Crossrefs

Programs

  • Mathematica
    nn = 24; g = 1/2; f[n_] := 1/n; a[1] = 1; Do[s = 0; a[n] = NestWhile[# + 1 &, 1, ! (s += f[#]) > n*g &], {n, nn}]; Map[a, Range[nn]]
  • PARI
    first(m)=my(v=vector(m),i,k);for(i=1,m,k=1;while(sum(x=1,k,1/x)<=i/2,k++);v[i]=k;);v; \\ Anders Hellström, Jul 19 2015

Extensions

a(29)-a(35) from Jean-François Alcover, Jun 04 2013
a(36)-a(37) from Jon E. Schoenfield, Aug 31 2013
a(38)-a(39) from Jon E. Schoenfield, Jul 19 2015
Previous Showing 21-30 of 63 results. Next