cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A019836 Decimal expansion of sine of 27 degrees.

Original entry on oeis.org

4, 5, 3, 9, 9, 0, 4, 9, 9, 7, 3, 9, 5, 4, 6, 7, 9, 1, 5, 6, 0, 4, 0, 8, 3, 6, 6, 3, 5, 7, 8, 7, 1, 1, 9, 8, 9, 8, 3, 0, 4, 7, 7, 0, 3, 0, 4, 9, 0, 2, 1, 5, 5, 6, 9, 8, 5, 3, 1, 6, 0, 0, 5, 8, 2, 2, 0, 2, 6, 7, 8, 4, 1, 3, 1, 8, 5, 2, 4, 2, 8, 7, 5, 4, 4, 7, 3, 4, 3, 9, 2, 2, 1, 9, 4, 6, 7, 9, 7
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 8 and denominator 2. - Charles R Greathouse IV, Aug 27 2017

Programs

Formula

Equals cos(7*Pi/20). 2*this^2-1 = -A019845. - R. J. Mathar, Aug 29 2025

A019866 Decimal expansion of sine of 57 degrees.

Original entry on oeis.org

8, 3, 8, 6, 7, 0, 5, 6, 7, 9, 4, 5, 4, 2, 4, 0, 2, 9, 6, 3, 7, 5, 9, 0, 9, 4, 1, 8, 0, 4, 5, 4, 7, 8, 9, 4, 0, 3, 9, 5, 0, 0, 2, 6, 5, 0, 9, 5, 9, 2, 3, 8, 2, 4, 9, 2, 2, 0, 1, 2, 9, 0, 2, 9, 2, 2, 6, 3, 5, 1, 6, 9, 5, 3, 4, 3, 8, 0, 6, 7, 7, 5, 1, 3, 4, 7, 3, 9, 8, 3, 9, 2, 2, 9, 7, 4, 5, 3, 7
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 16 and denominator 2. - Charles R Greathouse IV, Nov 05 2017

Programs

Formula

A365165 Length of the perimeter of the regular 9-gon with unit circumradius.

Original entry on oeis.org

6, 1, 5, 6, 3, 6, 2, 5, 7, 9, 8, 6, 2, 0, 3, 7, 1, 9, 4, 7, 9, 3, 7, 9, 3, 0, 6, 4, 2, 8, 0, 6, 7, 2, 4, 5, 3, 7, 3, 5, 5, 0, 0, 6, 1, 5, 2, 5, 4, 8, 9, 1, 3, 1, 2, 3, 7, 0, 8, 7, 2, 9, 5, 8, 3, 2, 4, 8, 6, 5, 7, 4, 6, 6, 3, 7, 3, 9, 6, 7, 9, 2, 1, 5, 5, 4, 2, 3, 2, 8, 2, 0, 9, 3, 4, 5, 9, 8, 5, 5
Offset: 1

Views

Author

R. J. Mathar, Aug 24 2023

Keywords

Examples

			6.1563625798620371947937930642806724537...
		

Crossrefs

Cf. A019845 (5-gon), A010487 (4-gon), A365163 (7-gon), A365164 (8-gon), A272488 (edge length).

Programs

  • Mathematica
    First[RealDigits[18*Sin[Pi/9], 10, 100]] (* Paolo Xausa, Mar 19 2024 *)

Formula

Equals 9*A272488.

A019848 Decimal expansion of sine of 39 degrees.

Original entry on oeis.org

6, 2, 9, 3, 2, 0, 3, 9, 1, 0, 4, 9, 8, 3, 7, 4, 5, 2, 7, 0, 5, 9, 0, 2, 4, 5, 8, 2, 7, 9, 9, 7, 0, 4, 2, 6, 5, 6, 6, 8, 6, 2, 4, 1, 2, 1, 2, 9, 8, 6, 6, 6, 3, 9, 4, 6, 0, 3, 2, 8, 0, 2, 5, 7, 8, 0, 7, 5, 3, 0, 0, 9, 9, 8, 7, 2, 1, 3, 6, 3, 6, 7, 2, 4, 6, 4, 6, 9, 4, 6, 6, 0, 6, 8, 9, 9, 9, 8, 9
Offset: 0

Views

Author

Keywords

Comments

This sequence is also decimal expansion of cosine of 51 degrees. - Mohammad K. Azarian, Jun 29 2013
An algebraic number of degree 16 and denominator 2. - Charles R Greathouse IV, Nov 05 2017

Crossrefs

Programs

Formula

A158934 Decimal expansion of xi = (cos(Pi/5) - 1/2) / (sin(Pi/5) + 1/2).

Original entry on oeis.org

2, 8, 4, 0, 7, 9, 0, 4, 3, 8, 4, 0, 4, 1, 2, 2, 9, 6, 0, 2, 8, 2, 9, 1, 8, 3, 2, 3, 9, 3, 1, 2, 6, 1, 6, 9, 0, 9, 1, 0, 8, 8, 0, 8, 8, 4, 4, 5, 7, 3, 7, 5, 8, 2, 7, 5, 9, 1, 6, 2, 6, 6, 6, 1, 5, 5, 0, 4, 5, 8, 7, 7, 3, 5, 1, 4, 8, 4, 5, 5, 3, 7, 3, 0, 3, 7, 8, 4, 1, 7, 7, 5, 2, 2, 3, 1, 6, 2, 5, 8, 6, 7, 0, 4
Offset: 0

Views

Author

Benoit Cloitre, Mar 31 2009

Keywords

Comments

This constant xi arises in the Davenport-Heilbronn zeta-function Z(s)=Sum_{k>=1} b(k)/k^s where b(k) is the 5-periodic sequence with period [1,xi,-xi,0]. Z satisfies a functional equation (like zeta) but does not satisfy RH. Some nontrivial zeros are off the critical line (see reference).

Examples

			0.2840790438404122960282...
		

References

  • Peter Borwein, Stephen Choi, Brendan Rooney and Andrea Weirathmueller, The Riemann Hypothesis, Springer, 2009, pp. 136-137.

Crossrefs

Programs

  • Mathematica
    (Sqrt[5]-1) / (2+Sqrt[10-2*Sqrt[5]]) // RealDigits[#, 10, 104]& // First (* Jean-François Alcover, Mar 04 2013 *)
  • PARI
    xi=(cos(Pi/5)-1/2)/(sin(Pi/5)+1/2)

Formula

Equals (sqrt(10-2*sqrt(5))-2)/(sqrt(5)-1).
Equals (A001622-1)/(2*A019845+1). - R. J. Mathar, Apr 02 2009
Equals sqrt((5 + sqrt(5))/2) - (sqrt(5) + 1)/2 = A188593 - A001622. - Amiram Eldar, Jan 23 2022

A343055 Decimal expansion of the imaginary part of i^(1/16), or sin(Pi/32).

Original entry on oeis.org

0, 9, 8, 0, 1, 7, 1, 4, 0, 3, 2, 9, 5, 6, 0, 6, 0, 1, 9, 9, 4, 1, 9, 5, 5, 6, 3, 8, 8, 8, 6, 4, 1, 8, 4, 5, 8, 6, 1, 1, 3, 6, 6, 7, 3, 1, 6, 7, 5, 0, 0, 5, 6, 7, 2, 5, 7, 2, 6, 4, 9, 7, 9, 8, 0, 9, 3, 8, 7, 3, 0, 2, 7, 8, 9, 0, 8, 7, 5, 3, 6, 8, 0, 7, 1, 1, 1, 0, 7, 7, 1, 4, 6, 3, 1, 8, 5, 5, 9, 5, 5, 4, 0, 7, 4, 2, 0, 6, 5, 2, 6, 4, 4, 4, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Comments

An algebraic number of degree 16 and denominator 2. - Charles R Greathouse IV, Jan 09 2022

Examples

			0.09801714032956060199419...
		

Crossrefs

sin(Pi/m): A010527 (m=3), A010503 (m=4), A019845 (m=5), A323601 (m=7), A182168 (m=8), A019829 (m=9), A019827 (m=10), A019824 (m=12), A232736 (m=14), A019821 (m=15), A232738 (m=16), A241243 (m=17), A019819 (m=18), A019818 (m=20), A343054 (m=24), A019815 (m=30), this sequence (m=32), A019814 (m=36).

Programs

  • Mathematica
    RealDigits[Sin[Pi/32], 10, 100, -1][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    imag(I^(1/16))
    
  • PARI
    sin(Pi/32)
    
  • PARI
    sqrt(2-sqrt(2+sqrt(2+sqrt(2))))/2
    
  • Sage
    numerical_approx(sin(pi/32), digits=123) # G. C. Greubel, Sep 30 2022

Formula

Equals (1/2) * sqrt(2-sqrt(2+sqrt(2+sqrt(2)))).
One of the 16 real roots of -128*x^2 +2688*x^4 -21504*x^6 +84480*x^8 +32768*x^16 -131072*x^14 +212992*x^12 -180224*x^10 +1 =0. - R. J. Mathar, Aug 29 2025
Equals A232738/(2*A343056). - R. J. Mathar, Sep 05 2025

A365163 Length of the perimeter of the regular heptagon with unit circumradius.

Original entry on oeis.org

6, 0, 7, 4, 3, 7, 2, 3, 4, 7, 6, 4, 5, 8, 1, 3, 6, 8, 6, 6, 6, 0, 7, 5, 6, 6, 5, 9, 8, 7, 7, 0, 2, 2, 5, 6, 4, 5, 3, 9, 8, 7, 0, 1, 8, 9, 0, 2, 4, 4, 3, 8, 2, 7, 0, 2, 2, 3, 6, 6, 2, 2, 4, 9, 4, 5, 0, 8, 4, 5, 5, 2, 3, 1, 4, 4, 7, 7, 7, 9, 0, 1, 2, 9, 0, 9, 7, 6, 3, 0, 4, 8
Offset: 1

Views

Author

R. J. Mathar, Aug 24 2023

Keywords

Examples

			6.0743723476458136866607566598...
		

Crossrefs

Cf. A019845 (5-gon), A010487 (4-gon), A365164 (8-gon), A365165 (9-gon), A272487 (edge length), A104957 (area).

Programs

  • Mathematica
    f[R_, s_] := 2*R*s*Sin[Pi/s]; a[n_] := RealDigits[f[1, 7], 10, n][[1]]; a[92] (* Robert P. P. McKone, Aug 24 2023 *)

Formula

Equals 7*A272487.

A365164 Length of the perimeter of the regular octagon with unit circumradius.

Original entry on oeis.org

6, 1, 2, 2, 9, 3, 4, 9, 1, 7, 8, 4, 1, 4, 3, 6, 3, 4, 7, 6, 5, 5, 3, 5, 9, 7, 4, 4, 4, 8, 6, 3, 8, 1, 8, 6, 8, 1, 8, 1, 5, 1, 2, 9, 9, 9, 7, 7, 0, 0, 3, 2, 6, 6, 2, 9, 4, 0, 8, 1, 0, 1, 7, 0, 0, 4, 0, 7, 3, 6, 5, 4, 3, 3, 6, 1, 4, 3, 5, 0, 7, 5, 7, 9, 2, 2, 2, 0, 5, 6, 5, 4, 7, 6, 5, 3, 6, 7, 5, 4, 3, 7, 4, 7, 8, 8, 6, 1, 8
Offset: 1

Views

Author

R. J. Mathar, Aug 24 2023

Keywords

Examples

			6.122934917841436347655359744486...
		

Crossrefs

Cf. A019845 (5-gon), A010487 (4-gon), A365163 (7-gon), A365165 (9-gon), A101464 (edge length), A010466 (area).

Programs

  • Mathematica
    f[R_, s_] := 2*R*s*Sin[Pi/s]; a[n_] := RealDigits[f[1, 8], 10, n][[1]]; a[109] (* Robert P. P. McKone, Aug 24 2023 *)

Formula

Equals 8*A101464.

A371604 Decimal expansion of 5 * sqrt(3 - phi) / (2 * Pi).

Original entry on oeis.org

9, 3, 5, 4, 8, 9, 2, 8, 3, 7, 8, 8, 6, 3, 9, 0, 3, 3, 2, 1, 2, 9, 1, 9, 0, 6, 6, 1, 5, 2, 9, 8, 2, 8, 1, 6, 7, 9, 6, 7, 8, 1, 9, 2, 7, 2, 9, 8, 4, 9, 8, 1, 2, 4, 7, 0, 6, 6, 5, 0, 1, 9, 8, 7, 0, 2, 5, 5, 5, 3, 3, 8, 9, 8, 4, 2, 8, 9, 2, 2, 6, 7, 8, 8, 0, 7, 9, 8, 8, 6, 2, 8, 4, 0, 8, 9, 8, 5, 9
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 01 2024

Keywords

Examples

			0.93548928378863903321291906615298281...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[5 Sqrt[3 - GoldenRatio]/(2 Pi), 10, 99][[1]]

Formula

Equals Product_{k>=1} (1 - 1/(5*k)^2).
Equals A258403/Pi. - Hugo Pfoertner, Apr 01 2024

A348757 Decimal expansion of the area of a regular pentagram inscribed in a unit-radius circle.

Original entry on oeis.org

1, 1, 2, 2, 5, 6, 9, 9, 4, 1, 4, 4, 8, 9, 6, 3, 4, 3, 1, 1, 0, 4, 8, 6, 2, 8, 7, 9, 4, 9, 3, 8, 1, 6, 9, 6, 8, 9, 4, 8, 0, 3, 1, 2, 0, 5, 8, 0, 2, 7, 0, 8, 7, 9, 8, 4, 8, 6, 1, 9, 6, 5, 8, 5, 4, 2, 2, 0, 1, 8, 8, 9, 1, 1, 9, 7, 5, 5, 2, 0, 6, 6, 4, 9, 1, 0, 7, 6, 4, 4, 3, 7, 7, 3, 3, 5, 6, 4, 5, 1, 2, 2, 1, 0, 3
Offset: 1

Views

Author

Amiram Eldar, Nov 12 2021

Keywords

Comments

An algebraic number of degree 4. The smaller of the two positive roots of the equation 16*x^4 - 2500*x^2 + 3125 = 0.

Examples

			1.12256994144896343110486287949381696894803120580270...
		

References

  • Robert B. Banks, Slicing Pizzas, Racing Turtles, and Further Adventures in Applied Mathematics, Princeton University Press, 2012, p. 15.

Crossrefs

Programs

  • Mathematica
    RealDigits[5*Sin[Pi/5]/GoldenRatio^2, 10, 100][[1]]

Formula

Equals 5*sin(Pi/5)/phi^2, where phi is the golden ratio (A001622).
Equals 5/(cot(Pi/5) + cot(Pi/10)).
Equals 10*tan(Pi/10)/(3 - tan(Pi/10)^2).
Equals (5/2)*sqrt((25 -11*sqrt(5))/2).
Equals 5*(5 - sqrt(5))/(4*sqrt(5 + 2*sqrt(5))) = A094874 * A179050 = 10 * A094874 / A344172.
Previous Showing 11-20 of 21 results. Next