cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A316981 Number of non-isomorphic strict multiset partitions of weight n with no equivalent vertices.

Original entry on oeis.org

1, 1, 2, 6, 15, 40, 121
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2018

Keywords

Comments

Also the number of nonnegative integer n X n matrices with sum of elements equal to n, under row and column permutations, with no equal rows and no equal columns.
In a multiset partition, two vertices are equivalent if in every block the multiplicity of the first is equal to the multiplicity of the second.

Examples

			Non-isomorphic representatives of the a(3) = 6 strict multiset partitions with no equivalent vertices (first column) and their duals (second column):
      (111) <-> (111)
      (122) <-> (1)(11)
    (1)(11) <-> (122)
    (1)(22) <-> (1)(22)
    (2)(12) <-> (2)(12)
  (1)(2)(3) <-> (1)(2)(3)
		

Crossrefs

A322764 Number of set partitions of the multiset consisting of one copy each of x_1, x_2, ..., x_n, and 2 copies each of y_1 and y_2.

Original entry on oeis.org

9, 26, 92, 371, 1663, 8155, 43263, 246218, 1493344, 9600683, 65133513, 464538351, 3471671717, 27109690422, 220646396816, 1867649896679, 16408260807503, 149357276866099, 1406334890073883, 13677748330883790, 137221985081833892
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2018

Keywords

Comments

The initial 9 is also A020555(2).

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778.

Crossrefs

Cf. A000110 (Bell number), A020555, A322773.
Column 2 of the array in A322765.

Programs

  • PARI
    T(n, k) = if(k==0, sum(j=0, n, stirling(n, j, 2)), (T(n+2, k-1)+T(n+1, k-1)+sum(j=0, k-1, binomial(k-1, j)*T(n, j)))/2);
    vector(20, n, T(n-1, 2)) \\ Seiichi Manyama, Nov 21 2020

Formula

4*a(n) = 3*b(n) + 2*b(n+1) + 3*b(n+2) + 2*b(n+3) + b(n+4), where b(n) = A000110(n). - Seiichi Manyama, Nov 21 2020

A358710 Triangle read by rows. Number T(n, k) of partitions of the multiset [1, 1, 2, 2, ..., n, n] into k nonempty submultisets, for 1 <= k <= 2n.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 1, 13, 26, 19, 6, 1, 1, 40, 183, 259, 163, 55, 10, 1, 1, 121, 1190, 3115, 3373, 1896, 620, 125, 15, 1, 1, 364, 7443, 34891, 62240, 54774, 27610, 8706, 1795, 245, 21, 1, 1, 1093, 45626, 374059, 1072316, 1435175, 1063570, 485850, 146363, 30261, 4361, 434, 28, 1
Offset: 0

Views

Author

Marko Riedel, Nov 27 2022

Keywords

Comments

A generalization of ordinary Stirling set numbers to multisets that contain some m instances each of n elements, here we have m=2.

Examples

			The triangular array starts:
[0] 1;
[1] 1,   1;
[2] 1,   4,    3,     1;
[3] 1,  13,   26,    19,     6,     1;
[4] 1,  40,  183,   259,   163,    55,    10,    1;
[5] 1, 121, 1190,  3115,  3373,  1896,   620,  125,   15,   1;
[6] 1, 364, 7443, 34891, 62240, 54774, 27610, 8706, 1795, 245, 21, 1;
		

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Cf. A008277, A020555 (row sums), A358721, A358722.

A316892 Number of non-isomorphic strict multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n} with no equivalent vertices.

Original entry on oeis.org

1, 1, 3, 9, 24, 69, 211, 654
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2018

Keywords

Comments

Also the number of unlabeled graphs with n edges, allowing loops, with no equivalent vertices (two vertices are equivalent if in every edge the multiplicity of the first is equal to the multiplicity of the second). For example, non-isomorphic representatives of the a(2) = 3 multigraphs are {(1,2),(1,3)}, {(1,1),(1,2)}, {(1,1),(2,2)}.

Examples

			Non-isomorphic representatives of the a(3) = 9 strict multiset partitions:
  (112)(233)
  (1)(2)(1233)
  (1)(12)(233)
  (2)(11)(233)
  (11)(22)(33)
  (12)(13)(23)
  (1)(2)(3)(123)
  (1)(2)(12)(33)
  (1)(2)(13)(23)
		

Crossrefs

Extensions

a(6)-a(7) from Andrew Howroyd, Feb 07 2020

A358781 Number of multiset partitions of [1,1,1,1,2,2,2,2,...,n,n,n,n] into nonempty multisets.

Original entry on oeis.org

1, 5, 109, 6721, 911838, 231575143, 99003074679, 66106443797808, 65197274052335504, 90954424202936106523, 173398227073956386079670, 439196881673194611574668282, 1443741072199958276777413001395
Offset: 0

Views

Author

Marko Riedel, Nov 29 2022

Keywords

Comments

Generalization of Bell numbers to multiset partitions with m instances each of n different elements, here m=4.

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Row n=4 of A219727.

A020559 Number of ordered multigraphs on n labeled edges (with loops).

Original entry on oeis.org

1, 2, 11, 97, 1219, 20385, 433022, 11296844, 352866598, 12938878499, 548257129281, 26503637228615, 1446212232918009, 88278080019931590, 5981590442549971867, 446907535344317788261, 36602523445840041088223
Offset: 0

Views

Author

Gilbert Labelle (gilbert(AT)lacim.uqam.ca), Simon Plouffe

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Formula

E.g.f.: exp((3*x-2)/(2-2*x))*Sum_{n>=0}1/(n!*(1-x)^binomial(n+1, 2)). - Vladeta Jovovic, May 02 2004
a(n) = Sum_{k=0..n} (-1)^(n-k) * Stirling1(n, k) * A020555(k). - Sean A. Irvine, Apr 24 2019

A316977 Number of series-reduced rooted trees whose leaves are {1, 1, 2, 2, 3, 3, ..., n, n}.

Original entry on oeis.org

1, 12, 575, 66080, 13830706, 4566898564, 2181901435364, 1422774451251512, 1213875872220833664, 1312273759143855989808, 1752860078230602866012288, 2834766624822130489716563008, 5458358420687156358967526721408, 12339106957086349462329140342122112
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.

Examples

			The a(2) = 12 trees are (1(1(22))), (1(2(12))), (1(122)), (2(1(12))), (2(2(11))), (2(112)), ((11)(22)), ((12)(12)), (11(22)), (12(12)), (22(11)), (1122).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=If[Length[m]==1,m,Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])]];
    Table[Length[gro[Ceiling[Range[1/2,n,1/2]]]],{n,4}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(2*n), vars=vector(2*n-2,i,sv(2+i))); v[1]=sv(1); for(n=2, #v, v[n] = substvec(polcoef( sExp(x*Ser(v[1..n])), n ), vars[1..n-2], vector(n-2))); sCartProd(x*Ser(v), 1/(1-x^2*symGroupCycleIndex(2)) + O(x*x^(2*n)))}
    seq(n)={my(p=substvec(cycleIndexSeries(n), [sv(1), sv(2)], [1,1])); vector(n, n, polcoef(p,2*n))} \\ Andrew Howroyd, Jan 02 2021

Formula

a(n) = A292505(A061742(n)). - Andrew Howroyd, Nov 19 2018

Extensions

Terms a(6) and beyond from Andrew Howroyd, Jan 02 2021
Previous Showing 21-27 of 27 results.