cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A188377 a(n) = n^3 - 4n^2 + 6n - 2.

Original entry on oeis.org

7, 22, 53, 106, 187, 302, 457, 658, 911, 1222, 1597, 2042, 2563, 3166, 3857, 4642, 5527, 6518, 7621, 8842, 10187, 11662, 13273, 15026, 16927, 18982, 21197, 23578, 26131, 28862, 31777, 34882, 38183, 41686, 45397, 49322, 53467, 57838, 62441, 67282, 72367
Offset: 3

Views

Author

Adeniji, Adenike & Makanjuola, Samuel (somakanjuola(AT)unilorin.edu.ng) Apr 14 2011

Keywords

Comments

Number of nilpotent elements in the identity difference partial one - one transformation semigroup, denoted by N(IDI_n). For n=3, #N(IDI_n) = 7.
a(n+1) is also the Moore lower bound on the order of an (n,7)-cage. - Jason Kimberley, Oct 20 2011

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), this sequence (g=7). - Jason Kimberley, Oct 30 2011

Programs

Formula

a(n+1) = (n+1)^3 - 4*(n+1)^2 + 6*(n+1) - 2
= (n-1)^3 + 2*(n-1)^2 + 2*(n-1) + 2
= 1222 read in base n-1.
- Jason Kimberley, Oct 20 2011
From Colin Barker, Apr 06 2012: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x^3*(7 - 6*x + 7*x^2 - 2*x^3)/(1-x)^4. (End)
E.g.f.: 2 - x - x^2 + exp(x)*(x^3 - x^2 + 3*x - 2). - Stefano Spezia, Apr 09 2022

Extensions

Edited by N. J. A. Sloane, Apr 23 2011

A094626 Expansion of x*(1+x)/((1-x)*(1-10*x^2)).

Original entry on oeis.org

0, 1, 2, 12, 22, 122, 222, 1222, 2222, 12222, 22222, 122222, 222222, 1222222, 2222222, 12222222, 22222222, 122222222, 222222222, 1222222222, 2222222222, 12222222222, 22222222222, 122222222222, 222222222222, 1222222222222, 2222222222222, 12222222222222
Offset: 0

Views

Author

Paul Barry, May 15 2004

Keywords

Comments

Previous name: Sequence whose n-th term digits sum to n.
a(n) is the smallest integer with digits from {0,1,2} having digit sum n. Namely the base-10 reading of the ternary string of A062318. - Jason Kimberley, Nov 01 2011
a(n) is the Moore lower bound on the order of an (11,n)-cage. - Jason Kimberley, Oct 18 2011

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), this sequence (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Nov 01 2011

Programs

  • Mathematica
    LinearRecurrence[{1, 10, -10}, {0, 1, 2}, 30] (* Paolo Xausa, Feb 21 2024 *)
  • PARI
    concat(0, Vec(x*(1+x)/((1-x)*(1-10*x^2)) + O(x^30))) \\ Colin Barker, Mar 17 2017

Formula

G.f.: x*(1+x)/((1-x)*(1-10*x^2)).
a(n) = 10^(n/2)*(11*sqrt(10)/180 + 1/9 - (11*sqrt(10)/180 - 1/9)*(-1)^n) - 2/9.
From Colin Barker, Mar 17 2017: (Start)
a(n) = 2*(10^(n/2) - 1)/9 for n even.
a(n) = (11*10^((n-1)/2) - 2)/9 for n odd. (End)
E.g.f.: (20*(cosh(sqrt(10)*x) - cosh(x) - sinh(x)) + 11*sqrt(10)*sinh(sqrt(10)*x))/90. - Stefano Spezia, Apr 09 2022

A198300 Square array M(k,g), read by antidiagonals, of the Moore lower bound on the order of a (k,g)-cage.

Original entry on oeis.org

3, 4, 4, 5, 6, 5, 6, 8, 10, 6, 7, 10, 17, 14, 7, 8, 12, 26, 26, 22, 8, 9, 14, 37, 42, 53, 30, 9, 10, 16, 50, 62, 106, 80, 46, 10, 11, 18, 65, 86, 187, 170, 161, 62, 11, 12, 20, 82, 114, 302, 312, 426, 242, 94, 12, 13, 22, 101, 146, 457, 518, 937, 682, 485, 126, 13
Offset: 1

Views

Author

Jason Kimberley, Oct 27 2011

Keywords

Comments

k >= 2; g >= 3.
The base k-1 reading of the base 10 string of A094626(g).
Exoo and Jajcay Theorem 1: M(k,g) <= A054760(k,g) with equality if and only if: k = 2 and g >= 3; g = 3 and k >= 2; g = 4 and k >= 2; g = 5 and k = 2, 3, 7 or possibly 57; or g = 6, 8, or 12, and there exists a symmetric generalized n-gon of order k - 1.

Examples

			This is the table formed from the antidiagonals for k+g = 5..20:
3   4   5   6    7    8    9     10    11    12    13    14    15   16  17 18
4   6  10  14   22   30    46    62    94   126   190   254   382  510 766
5   8  17  26   53   80   161   242   485   728  1457  2186  4373 6560
6  10  26  42  106  170   426   682  1706  2730  6826 10922 27306
7  12  37  62  187  312   937  1562  4687  7812 23437 39062
8  14  50  86  302  518  1814  3110 10886 18662 65318
9  16  65 114  457  800  3201  5602 22409 39216
10 18  82 146  658 1170  5266  9362 42130
11 20 101 182  911 1640  8201 14762
12 22 122 222 1222 2222 12222
13 24 145 266 1597 2928
14 26 170 314 2042
15 28 197 366
16 30 226
17 32
18
		

References

  • E. Bannai and T. Ito, On finite Moore graphs, J. Fac. Sci. Tokyo, Sect. 1A, 20 (1973) 191-208.
  • R. M. Damerell, On Moore graphs, Proc. Cambridge Phil. Soc. 74 (1973) 227-236.

Crossrefs

Moore lower bound on the order of a (k,g) cage: this sequence (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7), 2*A053698 (g=8), 2*A053699 (g=10), 2*A053700 (g=12), 2*A053716 (g=14), 2*A053716 (g=16), 2*A102909 (g=18), 2*A103623 (g=20), 2*A060885 (g=22), 2*A105067 (g=24), 2*A060887 (g=26), 2*A104376 (g=28), 2*A104682 (g=30), 2*A105312 (g=32).
Cf. A054760 (the actual order of a (k,g)-cage).

Programs

  • Magma
    ExtendedStringToInt:=func;
    M:=func;
    k_:=2;g_:=3;
    anti:=func;
    [anti(kg):kg in[5..15]];
  • Mathematica
    Table[Function[g, FromDigits[#, k - 1] &@ IntegerDigits@ SeriesCoefficient[x (1 + x)/((1 - x) (1 - 10 x^2)), {x, 0, g}]][n - k + 3], {n, 2, 12}, {k, n, 2, -1}] // Flatten (* Michael De Vlieger, May 15 2017 *)

Formula

M(k,2i) = 2 sum_{j=0}^{i-1}(k-1)^j = string "2"^i read in base k-1.
M(k,2i+1) = (k-1)^i + 2 sum_{j=0}^{i-1}(k-1)^j = string "1"*"2"^i read in base k-1.
Recurrence:
M(k,3) = k + 1,
M(k,2i) = M(k,2i-1) + (k-1)^(i-1),
M(k,2i+1) = M(k,2i) + (k-1)^i.

A198306 Moore lower bound on the order of a (6,g)-cage.

Original entry on oeis.org

7, 12, 37, 62, 187, 312, 937, 1562, 4687, 7812, 23437, 39062, 117187, 195312, 585937, 976562, 2929687, 4882812, 14648437, 24414062, 73242187, 122070312, 366210937, 610351562, 1831054687, 3051757812, 9155273437, 15258789062
Offset: 3

Views

Author

Jason Kimberley, Oct 30 2011

Keywords

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), this sequence (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7).

Programs

  • Mathematica
    LinearRecurrence[{1,5,-5},{7,12,37},30] (* Harvey P. Dale, Jun 28 2015 *)

Formula

a(2*i) = 2*Sum_{j=0..i-1} 5^j = string "2"^i read in base 5.
a(2*i+1) = 5^i + 2*Sum_{j=0..i-1} 5^j = string "1"*"2"^i read in base 5.
a(n) <= A218554(n). - Jason Kimberley, Dec 21 2012
a(n) = a(n-1)+5*a(n-2)-5*a(n-3). G.f.: -x^3*(10*x^2-5*x-7) / ((x-1)*(5*x^2-1)). - Colin Barker, Feb 01 2013
From Colin Barker, Nov 25 2016: (Start)
a(n) = (5^(n/2) - 1)/2 for n>2 and even.
a(n) = (3*5^((n-1)/2) - 1)/2 for n>2 and odd. (End)
E.g.f.: (5*cosh(sqrt(5)*x) - 5*cosh(x) - 5*sinh(x) + 3*sqrt(5)*sinh(sqrt(5)*x) - 10*x*(1 + x))/10. - Stefano Spezia, Apr 07 2022

A198307 Moore lower bound on the order of a (7,g)-cage.

Original entry on oeis.org

8, 14, 50, 86, 302, 518, 1814, 3110, 10886, 18662, 65318, 111974, 391910, 671846, 2351462, 4031078, 14108774, 24186470, 84652646, 145118822, 507915878, 870712934, 3047495270, 5224277606, 18284971622, 31345665638, 109709829734, 188073993830, 658258978406
Offset: 3

Views

Author

Jason Kimberley, Oct 30 2011

Keywords

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), this sequence (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7).

Programs

  • Mathematica
    DeleteCases[CoefficientList[Series[2 x^3*(4 + 3 x - 6 x^2)/((1 - x) (1 - 6 x^2)), {x, 0, 31}], x], 0] (* Michael De Vlieger, Mar 17 2017 *)
    LinearRecurrence[{1,6,-6},{8,14,50},30] (* or *) CoefficientList[ Series[ -((2 (-4-3 x+6 x^2))/(1-x-6 x^2+6 x^3)),{x,0,30}],x] (* Harvey P. Dale, Aug 03 2021 *)
  • PARI
    Vec(2*x^3*(4 + 3*x - 6*x^2) / ((1 - x)*(1 - 6*x^2)) + O(x^40)) \\ Colin Barker, Mar 17 2017

Formula

a(2*i) = 2*Sum_{j=0..i-1}6^j = string "2"^i read in base 6.
a(2*i+1) = 6^i + 2*Sum_{j=0..i-1}6^j = string "1"*"2"^i read in base 6.
a(n) <= A218555(n).
From Colin Barker, Feb 01 2013: (Start)
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) for n>5.
G.f.: 2*x^3*(4 + 3*x - 6*x^2) / ((1 - x)*(1 - 6*x^2)). (End)
From Colin Barker, Mar 17 2017: (Start)
a(n) = 2*(6^(n/2) - 1)/5 for n>2 and even.
a(n) = (7*6^(n/2-1/2) - 2)/5 for n>2 and odd. (End)
E.g.f.: (12*(cosh(sqrt(6)*x) - cosh(x)) + 7*sqrt(6)*sinh(sqrt(6)*x) - 12*sinh(x) - 30*x*(1 + x))/30. - Stefano Spezia, Apr 07 2022

A198308 Moore lower bound on the order of an (8,g)-cage.

Original entry on oeis.org

9, 16, 65, 114, 457, 800, 3201, 5602, 22409, 39216, 156865, 274514, 1098057, 1921600, 7686401, 13451202, 53804809, 94158416, 376633665, 659108914, 2636435657, 4613762400, 18455049601, 32296336802, 129185347209, 226074357616, 904297430465, 1582520503314
Offset: 3

Views

Author

Jason Kimberley, Oct 30 2011

Keywords

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), this sequence (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7).

Programs

  • Mathematica
    LinearRecurrence[{1,7,-7},{9,16,65},40] (* Harvey P. Dale, Oct 14 2019 *)
  • PARI
    Vec(x^3*(9 + 7*x - 14*x^2) / ((1 - x)*(1 - 7*x^2)) + O(x^40)) \\ Colin Barker, Mar 17 2017

Formula

a(2*i) = 2 Sum_{j=0..i-1} 7^j = string "2"^i read in base 7.
a(2*i+1) = 7^i + 2 Sum_{j=0..i-1} 7^j = string "1"*"2"^i read in base 7.
From Colin Barker, Feb 01 2013: (Start)
a(n) = a(n-1) + 7*a(n-2) - 7*a(n-3) for n>5.
G.f.: x^3*(9 + 7*x - 14*x^2) / ((1 - x)*(1 - 7*x^2)). (End)
From Colin Barker, Mar 17 2017: (Start)
a(n) = (7^(n/2) - 1)/3 for n even.
a(n) = (4*7^(n/2-1/2) - 1)/3 for n odd. (End)
E.g.f.: (7*(cosh(sqrt(7)*x) - cosh(x) - sinh(x)) + 4*sqrt(7)*sinh(sqrt(7)*x) - 21*x*(1 + x))/21. - Stefano Spezia, Apr 09 2022

A198309 Moore lower bound on the order of a (9,g)-cage.

Original entry on oeis.org

10, 18, 82, 146, 658, 1170, 5266, 9362, 42130, 74898, 337042, 599186, 2696338, 4793490, 21570706, 38347922, 172565650, 306783378, 1380525202, 2454267026, 11044201618, 19634136210, 88353612946, 157073089682, 706828903570, 1256584717458, 5654631228562
Offset: 3

Views

Author

Jason Kimberley, Oct 30 2011

Keywords

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), this sequence (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7).

Programs

  • Mathematica
    LinearRecurrence[{1,8,-8},{10,18,82},30] (* Harvey P. Dale, Apr 03 2015 *)
  • PARI
    Vec(2*x^3*(5 + 4*x - 8*x^2) / ((1 - x)*(1 - 8*x^2)) + O(x^40)) \\ Colin Barker, Mar 17 2017

Formula

a(2*i) = 2 Sum_{j=0..i-1} 8^j = string "2"^i read in base 8.
a(2*i+1) = 8^i + 2 Sum_{j=0..i-1} 8^j = string "1"*"2"^i read in base 8.
From Colin Barker, Feb 01 2013: (Start)
a(n) = a(n-1) + 8*a(n-2) - 8*a(n-3) for n>5.
G.f.: 2*x^3*(5 + 4*x - 8*x^2) / ((1 - x)*(1 - 8*x^2)). (End)
From Colin Barker, Mar 17 2017: (Start)
a(n) = 2*(2^(3*n/2) - 1)/7 for n even.
a(n) = (9*2^((3*(n-1))/2) - 2)/7 for n odd. (End)
E.g.f.: (8*(cosh(2*sqrt(2)*x) - cosh(x) - sinh(x)) + 9*sqrt(2)*sinh(2*sqrt(2)*x) - 28*x*(1 + x))/28. - Stefano Spezia, Apr 09 2022

A198310 Moore lower bound on the order of a (10,g)-cage.

Original entry on oeis.org

11, 20, 101, 182, 911, 1640, 8201, 14762, 73811, 132860, 664301, 1195742, 5978711, 10761680, 53808401, 96855122, 484275611, 871696100, 4358480501, 7845264902, 39226324511, 70607384120, 353036920601, 635466457082, 3177332285411
Offset: 3

Views

Author

Jason Kimberley, Oct 30 2011

Keywords

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), this sequence (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7).

Programs

Formula

a(2i) = 2*Sum_{j=0..i-1} 9^j = string "2"^i read in base 9.
a(2i+1) = 9^i + 2*Sum_{j=0..i-1} 9^j = string "1"*"2"^i read in base 9.
From Colin Barker, Feb 01 2013: (Start)
a(n) = (-3-(-3)^n+4*3^n)/12.
a(n) = a(n-1)+9*a(n-2)-9*a(n-3).
G.f.: -x^3*(18*x^2-9*x-11) / ((x-1)*(3*x-1)*(3*x+1)). (End)
E.g.f.: (3*(cosh(3*x) - cosh(x) - sinh(x)) + 5*sinh(3*x))/12 - x - x^2. - Stefano Spezia, Apr 09 2022

A260717 Square array: row n gives the numbers remaining before the stage n of Ludic sieve.

Original entry on oeis.org

2, 3, 3, 4, 5, 5, 5, 7, 7, 7, 6, 9, 11, 11, 11, 7, 11, 13, 13, 13, 13, 8, 13, 17, 17, 17, 17, 17, 9, 15, 19, 23, 23, 23, 23, 23, 10, 17, 23, 25, 25, 25, 25, 25, 25, 11, 19, 25, 29, 29, 29, 29, 29, 29, 29, 12, 21, 29, 31, 37, 37, 37, 37, 37, 37, 37, 13, 23, 31, 37, 41, 41, 41, 41, 41, 41, 41, 41, 14, 25, 35, 41, 43, 43, 43, 43, 43, 43, 43, 43, 43
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2015

Keywords

Comments

This square array A(row,col) is read by downwards antidiagonals as: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
Ludic sieve starts with natural numbers larger than one: 2, 3, 4, 5, 6, 7, ... and in each subsequent stage one sets k = (which will be one of Ludic numbers) and removes both k and every k-th term after it, from column positions 1, 1+k, 1+2k, 1+3k, etc. of the preceding row to produce the next row of this array.

Examples

			The top left corner of the array:
   2,  3,  4,  5,  6,  7,  8,  9,  10,  11,  12,  13,  14,  15,  16,  17
   3,  5,  7,  9, 11, 13, 15, 17,  19,  21,  23,  25,  27,  29,  31,  33
   5,  7, 11, 13, 17, 19, 23, 25,  29,  31,  35,  37,  41,  43,  47,  49
   7, 11, 13, 17, 23, 25, 29, 31,  37,  41,  43,  47,  53,  55,  59,  61
  11, 13, 17, 23, 25, 29, 37, 41,  43,  47,  53,  55,  61,  67,  71,  73
  13, 17, 23, 25, 29, 37, 41, 43,  47,  53,  61,  67,  71,  73,  77,  83
  17, 23, 25, 29, 37, 41, 43, 47,  53,  61,  67,  71,  77,  83,  89,  91
  23, 25, 29, 37, 41, 43, 47, 53,  61,  67,  71,  77,  83,  89,  91,  97
  25, 29, 37, 41, 43, 47, 53, 61,  67,  71,  77,  83,  89,  91,  97, 107
  29, 37, 41, 43, 47, 53, 61, 67,  71,  77,  83,  89,  91,  97, 107, 115
  37, 41, 43, 47, 53, 61, 67, 71,  77,  83,  89,  91,  97, 107, 115, 119
  41, 43, 47, 53, 61, 67, 71, 77,  83,  89,  91,  97, 107, 115, 119, 121
  43, 47, 53, 61, 67, 71, 77, 83,  89,  91,  97, 107, 115, 119, 121, 127
  47, 53, 61, 67, 71, 77, 83, 89,  91,  97, 107, 115, 119, 121, 127, 131
  53, 61, 67, 71, 77, 83, 89, 91,  97, 107, 115, 119, 121, 127, 131, 143
  61, 67, 71, 77, 83, 89, 91, 97, 107, 115, 119, 121, 127, 131, 143, 149
  etc.
		

Crossrefs

Transpose: A260718.
Column 1: A003309 (without the initial 1).
Row 1: A020725, Row 2: A144396, Row 3: A007310 (from its second term onward), Row 4: A260714, Row 5: A260715.
Cf. A255127 (gives the numbers removed at each stage).
Cf. also array A258207.

Programs

  • Scheme
    (define (A260717 n) (A260717bi (A002260 n) (A004736 n)))
    (define (A260717bi row col) ((rowfun_n_for_A003309sieve row) col))
    (define (add1 n) (1+ n))
    ;; Uses definec-macro which can memoize also function-closures:
    (definec (rowfun_n_for_A003309sieve n) (if (= 1 n) add1 (let* ((prevrowfun (rowfun_n_for_A003309sieve (- n 1))) (everynth (prevrowfun 1))) (compose-funs prevrowfun (nonzero-pos 1 1 (lambda (i) (modulo (- i 1) everynth)))))))

A191595 Order of smallest n-regular graph of girth 5.

Original entry on oeis.org

5, 10, 19, 30, 40, 50
Offset: 2

Views

Author

N. J. A. Sloane, Jun 07 2011

Keywords

Comments

Current upper bounds for a(8)..a(20) are 80, 96, 124, 154, 203, 230, 288, 312, 336, 448, 480, 512, 576. - Corrected from "Lower" to "Upper" and updated, from Table 4 of the Dynamic cage survey, by Jason Kimberley, Dec 29 2012
Current lower bounds for a(8)..a(20) are 67, 86, 103, 124, 147, 174, 199, 230, 259, 294, 327, 364, 403. - from Table 4 of the Dynamic cage survey via Jason Kimberley, Dec 31 2012

Crossrefs

Orders of cages: A054760 (n,k), A000066 (3,n), A037233 (4,n), A218553 (5,n), A218554 (6,n), A218555 (7,n), this sequence (n,5).
Moore lower bound on the orders of (k,g) cages: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306(k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10),A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Nov 02 2011

Formula

a(n) >= A002522(n) with equality if and only if n = 2, 3, 7 or possibly 57. - Jason Kimberley, Nov 02 2011

Extensions

a(2) = 5 prepended by Jason Kimberley, Jan 02 2013
Previous Showing 11-20 of 33 results. Next