cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A322431 Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1-x^j)^10 is zero.

Original entry on oeis.org

6, 13, 17, 27, 28, 34, 36, 39, 41, 48, 55, 59, 61, 62, 72, 74, 76, 82, 83, 90, 93, 94, 97, 104, 105, 111, 112, 116, 121, 125, 127, 128, 131, 132, 138, 139, 146, 149, 151, 152, 153, 160, 168, 169, 174, 181, 182, 183, 188, 193, 195, 197, 202, 204, 207, 209, 211, 214, 215
Offset: 1

Views

Author

Seiichi Manyama, Dec 07 2018

Keywords

Comments

Indices of zero entries in A010818.
Also: numbers k such that 24k + 10 cannot be written as (12m+3)^2 + (4n+1)^2 with integers m, n. In this case, 12k + 5 is never prime. - M. F. Hasler, Jun 30 2025

Crossrefs

Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1 - x^j)^m is zero: A090864 (m=1), A213250 (m=2), A014132 (m=3), A302056 (m=4), A302057 (m=5), A020757 (m=6), A322430 (m=8), this sequence (m=10), A322432 (m=14), A322043 (m=15), A322433 (m=26).

Programs

  • PARI
    my(x='x+O('x^300)); Vec(select(x->(x==0), Vec(eta(x)^10 - 1), 1)) \\ Michel Marcus, Dec 08 2018

A322432 Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1-x^j)^14 is zero.

Original entry on oeis.org

4, 9, 15, 19, 24, 26, 29, 32, 34, 37, 44, 48, 49, 54, 55, 59, 66, 69, 74, 78, 79, 81, 83, 84, 92, 94, 99, 100, 101, 103, 104, 109, 113, 114, 117, 119, 124, 125, 129, 134, 136, 142, 144, 147, 149, 151, 154, 158, 159, 160, 169, 170, 171, 174, 179, 180, 184, 185, 193, 194
Offset: 1

Views

Author

Seiichi Manyama, Dec 07 2018

Keywords

Comments

Indices of zero entries in A010821.

Crossrefs

Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1 - x^j)^m is zero: A090864 (m=1), A213250 (m=2), A014132 (m=3), A302056 (m=4), A302057 (m=5), A020757 (m=6), A322430 (m=8), A322431 (m=10), this sequence (m=14), A322043 (m=15), A322433 (m=26).

Programs

  • PARI
    my(x='x+O('x^300)); Vec(select(x->(x==0), Vec(eta(x)^14 - 1), 1)) \\ Michel Marcus, Dec 08 2018

A118139 Numbers expressible as the sum of two triangular numbers in at least two different ways.

Original entry on oeis.org

6, 16, 21, 31, 36, 42, 46, 51, 55, 56, 66, 72, 76, 81, 91, 94, 106, 111, 120, 121, 123, 126, 133, 136, 141, 146, 156, 157, 171, 172, 174, 181, 186, 191, 196, 198, 210, 211, 216, 225, 226, 231, 237, 241, 246, 256, 259, 268, 276, 281, 286, 289, 291, 297, 301, 306
Offset: 1

Views

Author

Greg Huber, May 13 2006

Keywords

Comments

A052343(a(n)) > 1; gives A020756 together with A119345. - Reinhard Zumkeller, May 15 2006

Examples

			a(1) = 6 = 0 + 6 = 3 +3.
a(2) = 16 = 1 + 15 = 6 + 10.
a(3) = 21 = 0 + 21 = 6 + 15.
		

Crossrefs

Programs

  • Haskell
    a118139 n = a118139_list !! (n-1)
    a118139_list = filter ((> 1) . a052343) [0..]
    -- Reinhard Zumkeller, Jul 25 2014
  • Mathematica
    Sort[Transpose[Select[Tally[Total/@(Union[Sort/@Tuples[Accumulate[ Range[ 0,30]],2]])],#[[2]]>1&]][[1]]] (* Harvey P. Dale, Jul 21 2015 *)

Extensions

More terms from Reinhard Zumkeller, May 15 2006

A203861 G.f.: Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^3 where Lucas(n) = A000204(n).

Original entry on oeis.org

1, -3, -9, 20, 45, 0, -151, -231, 0, 140, 1107, 2052, 49, -1305, 0, -15004, -28260, 0, 17710, 0, 81, 324040, 589953, 0, -375570, -1089, 0, -124124, -10659705, -19764180, -121, 12605358, 0, 0, 4158315, 0, 567552368, 1052295189, -780030, -669901660, 0, 0, -221399431, -85965, 0
Offset: 0

Views

Author

Paul D. Hanna, Jan 07 2012

Keywords

Comments

a(A020757(n)) = 0 where A020757 lists numbers that are not the sum of two triangular numbers.

Examples

			G.f.: A(x) = 1 - 3*x - 9*x^2 + 20*x^3 + 45*x^4 - 151*x^6 - 231*x^7 +...
-log(A(x))/3 = x + 3*3*x^2/2 + 4*4*x^3/3 + 7*7*x^4/4 + 6*11*x^5/5 + 12*18*x^6/6 +...+ sigma(n)*A000204(n)*x^n/n +...
The g.f. equals the product:
A(x) = (1-x-x^2)^3 * (1-3*x^2+x^4)^3 * (1-4*x^3-x^6)^3 * (1-7*x^4+x^8)^3 * (1-11*x^5-x^10)^3 * (1-18*x^6+x^12)^3 *...* (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^3 *...
Positions of zeros form A020757:
[5,8,14,17,19,23,26,32,33,35,40,41,44,47,50,52,53,54,59,62,63,...]
which are numbers that are not the sum of two triangular numbers.
		

Crossrefs

Programs

  • PARI
    /* Subroutine used in PARI programs below: */
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, -3*sigma(k)*Lucas(k)*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(prod(m=1, n, 1 - Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))^3, n)}

Formula

G.f.: exp( Sum_{n>=1} -3 * sigma(n) * A000204(n) * x^n/n ).

A204383 G.f.: Product_{n>=1} (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^3 where A002203(n) is the companion Pell numbers.

Original entry on oeis.org

1, -6, -9, 70, 90, 0, -1411, -1722, 0, 490, 60534, 75222, 49, -21510, 0, -6067754, -7542180, 0, 2156110, 0, 81, 1420032740, 1764323886, 0, -504516870, -8118, 0, -50196874, -783087782910, -973096740630, -121, 278263575996, 0, 0, 27685627830, 0, 1024173639305948
Offset: 0

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

a(A020757(n)) = 0 where A020757 lists numbers that are not the sum of two triangular numbers.

Examples

			G.f.: A(x) = 1 - 6*x - 9*x^2 + 70*x^3 + 90*x^4 - 1411*x^6 - 1722*x^7 +...
-log(A(x))/3 = 1*2*x + 3*6*x^2/2 + 4*14*x^3/3 + 7*34*x^4/4 + 6*82*x^5/5 + 12*198*x^6/6 +...+ sigma(n)*A002203(n)*x^n/n +...
The g.f. equals the product:
A(x) = (1-2*x-x^2)^3 * (1-6*x^2+x^4)^3 * (1-14*x^3-x^6)^3 * (1-34*x^4+x^8)^3 * (1-82*x^5-x^10)^3 * (1-198*x^6+x^12)^3 *...* (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^3 *...
Positions of zeros form A020757:
[5,8,14,17,19,23,26,32,33,35,40,41,44,47,50,52,53,54,59,62,63,...].
		

Crossrefs

Programs

  • PARI
    /* Subroutine used in PARI programs below: */
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, -3*sigma(k)*A002203(k)*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(prod(m=1, n, 1 - A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))^3, n)}

Formula

G.f.: exp( Sum_{n>=1} -3 * sigma(n) * A002203(n) * x^n/n ).

A264101 Numbers that can't be represented as the sum of two squares, two triangular numbers, or a square and a triangular number.

Original entry on oeis.org

23, 33, 47, 62, 63, 86, 118, 134, 138, 143, 158, 167, 188, 195, 203, 204, 209, 223, 230, 243, 248, 275, 283, 294, 318, 323, 348, 368, 383, 385, 395, 398, 408, 411, 413, 418, 419, 426, 437, 440, 448, 454, 467, 473, 476, 489, 492, 503, 508, 518, 523, 558, 563, 566, 572, 608
Offset: 1

Views

Author

Alex Ratushnyak, Nov 03 2015

Keywords

Comments

Intersection of A014134, A020757, A022544.

Examples

			Since 22 = 16+6, because 16 is a square and 6 is a triangular number, 22 is not a term.
23 is a term because there is no representation as S+T or S1+S2 or T1+T2, where S, S1, S2 are squares, and T, T1, T2 are triangular numbers.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms <= N
    S:= [seq(i^2,i=0..floor(sqrt(N)))]: nS:= nops(S):
    T:= [seq(i*(i+1)/2, i=0..floor(sqrt(2*N)))]: nT:= nops(T):
    sort(convert({$1..N} minus {seq(seq(S[i]+S[j], j=1..i),i=1..nS),
    seq(seq(S[i]+T[j],i=1..nS),j=1..nT),
    seq(seq(T[i]+T[j],j=1..i),i=1..nT)}, list)); # Robert Israel, May 19 2020
  • Mathematica
    mx = 610; Complement[ Range@ mx, Union@ Flatten@ Table[{i^2 + j^2, i(i + 1)/2 + j^2, i(i + 1)/2 + j(j + 1)/2}, {i, 0, Sqrt[2 mx]}, {j, 0, Sqrt[2 mx]}]] (* Robert G. Wilson v, Nov 29 2015 *)

A357505 Numbers that are not sum of two distinct triangular numbers.

Original entry on oeis.org

0, 2, 5, 8, 12, 14, 17, 19, 20, 23, 26, 30, 32, 33, 35, 40, 41, 44, 47, 50, 52, 53, 54, 59, 62, 63, 68, 71, 74, 75, 77, 80, 82, 85, 86, 89, 90, 95, 96, 98, 103, 104, 107, 109, 110, 113, 116, 117, 118, 122, 124, 125, 128, 129, 131, 132, 134, 138, 140, 143, 145, 147
Offset: 1

Views

Author

Stefano Spezia, Oct 01 2022

Keywords

Comments

This sequence differs from A020757 in including the terms that are twice a triangular number and that cannot be expressed as a sum of two distinct triangular numbers: 0, 2, 12, 20, 30, 90, 110, 132, ... = 2*A357529.

Crossrefs

Cf. A000217, A020757 (subsequence), A357504 (complement).
Cf. A357529.

Programs

  • Mathematica
    TriangularQ[n_]:=IntegerQ[(Sqrt[1+8n]-1)/2]; A000217[n_]:=n(n+1)/2; a={}; For[k=0, k<=148, k++, ok=1; For[h=0, A000217[h]A000217[h]] , ok=0]]; If[ok==1, AppendTo[a, k]]]; a (* Stefano Spezia, Nov 06 2022 *)

A357529 Triangular numbers k such that 2*k cannot be expressed as a sum of two distinct triangular numbers.

Original entry on oeis.org

0, 1, 6, 10, 15, 45, 55, 66, 91, 120, 136, 231, 276, 300, 406, 435, 496, 561, 595, 630, 741, 780, 820, 861, 1081, 1225, 1326, 1431, 1830, 2016, 2080, 2145, 2211, 2415, 2485, 2701, 2850, 3240, 3321, 3486, 3655, 3916, 4005, 4465, 4560, 4950, 5050, 5356, 5460, 5565
Offset: 1

Views

Author

Stefano Spezia, Oct 02 2022

Keywords

Comments

Subset of even terms of A357505, divided by 2. - Michel Marcus, Nov 05 2022

Crossrefs

Cf. A000217 (supersequence), A002378.
Half of the complement of A357504 in A020756.
Half of the complement of A020757 in A357505.
Subsequence of A008851.

Programs

  • Mathematica
    TriangularQ[n_]:=IntegerQ[(Sqrt[1+8n]-1)/2]; A000217[n_]:=n(n+1)/2; a={}; For[k=0, k<=105, k++, ok=1; For[h=0, h<2k, h++, If[TriangularQ[2*A000217[k] - A000217[h]] && k!=h, ok=0]]; If[ok==1, AppendTo[a,k(k+1)/2]]]; a (* Stefano Spezia, Nov 05 2022 *)

A253195 Numbers congruent to 5 or 8 mod 9.

Original entry on oeis.org

5, 8, 14, 17, 23, 26, 32, 35, 41, 44, 50, 53, 59, 62, 68, 71, 77, 80, 86, 89, 95, 98, 104, 107, 113, 116, 122, 125, 131, 134, 140, 143, 149, 152, 158, 161, 167, 170, 176, 179, 185, 188, 194, 197, 203, 206, 212, 215, 221, 224, 230, 233, 239, 242, 248, 251
Offset: 1

Views

Author

Arkadiusz Wesolowski, Mar 24 2015

Keywords

Comments

These numbers cannot be written as the sum of two triangular numbers.

Crossrefs

Subsequence of A014132 and of A020757.

Programs

  • Magma
    [n: n in [0..251] | n mod 9 in {5, 8}];
    
  • Mathematica
    LinearRecurrence[{1, 1, -1}, {5, 8, 14}, 56]
    Select[Range[300],MemberQ[{5,8},Mod[#,9]]&] (* Harvey P. Dale, Mar 17 2020 *)
  • PARI
    Vec(x*(5 + 3*x + x^2)/((1 + x)*(1 - x)^2) + O(x^80)) \\ Michel Marcus, Mar 25 2015

Formula

a(n) = a(n-1) + a(n-2) - a(n-3), n >= 4.
G.f.: x*(5 + 3*x + x^2)/((1 + x)*(1 - x)^2).
a(n) = a(n-2) + 9.
a(n) = 9*n - a(n-1) - 5.
a(n) = 4*n + 2*ceiling(n/2) - floor(n/2) - 1.
a(n) = (9*n - (3/2)*(1 + (- 1)^n) + 1)/2.
E.g.f.: 1 + ((18*x - 1)*exp(x) - 3*exp(-x))/4. - David Lovler, Sep 06 2022

A375249 Integers which cannot be partitioned into the sum of a hexagonal number plus a pentagonal number, nor a hexagonal number plus a square, nor a pentagonal number plus a square.

Original entry on oeis.org

3, 8, 34, 43, 56, 59, 62, 68, 72, 73, 83, 89, 90, 97, 104, 110, 111, 114, 131, 138, 139, 148, 152, 163, 164, 167, 168, 186, 193, 200, 203, 205, 207, 222, 227, 228, 229, 233, 244, 249, 250, 252, 258, 269, 273, 279, 299, 300, 305, 306, 308, 309, 318, 319, 321, 333, 343, 344, 356, 364, 365
Offset: 1

Views

Author

Robert G. Wilson v, Aug 07 2024

Keywords

Comments

Inspired by A160324 and analogous to A020757.
C. F. Gauss proved that all positive integers can be expressed as the sum of three triangular numbers. However, Zhi-Wei Sun (2009) has shown that there are 95 candidates for universal triples. This sequence looks at the {p4, p5, p6} triples and ask which integers require all three members to satisfy the sum.
Obviously, a(n) cannot be either a square, a pentagonal number, nor a hexagonal number.
There are more terms less than some integer in A020757 than in this sequence. In a sense, a square plus a pentagonal plus a hexagonal number is more efficient than the sum of three triangular numbers.
a(n) =~ 5.14 n^(.97).

Examples

			7 is not in the sequence since the third hexagonal number 6 plus the second square or pentagonal number sum to 7;
8 is in the sequence because s = {0, 1, 4}, p = {0, 1, 5}, and h = {0, 1, 6} with no two sets having members which sum to 8.
		

Crossrefs

Programs

  • Mathematica
    planeFiguratePi[r_,n_] := Floor[((r -4) +Sqrt[(r -4)^2 + 8n (r -2)])/(2 (r - 2))];
    h = Table[PolygonalNumber[6, n], {n, 0, planeFiguratePi[6, 500]}];
    p = Table[PolygonalNumber[5, n], {n, 0, planeFiguratePi[5, 500]}];
    s = Table[PolygonalNumber[4, n], {n, 0, planeFiguratePi[4, 500]}];
    Complement[ Range@ 500, Flatten[{Outer[Plus, h, p], Outer[Plus, h, s], Outer[Plus, p, s]} ]]
Previous Showing 11-20 of 21 results. Next