A343237
Triangle T obtained from the array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0, by reading antidiagonals upwards.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 19, 7, 1, 1, 31, 65, 37, 9, 1, 1, 63, 211, 175, 61, 11, 1, 1, 127, 665, 781, 369, 91, 13, 1, 1, 255, 2059, 3367, 2101, 671, 127, 15, 1, 1, 511, 6305, 14197, 11529, 4651, 1105, 169, 17, 1
Offset: 0
The array A begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
-------------------------------------------------------------
0: 1 1 1 1 1 1 1 1 1 1 ...
1: 1 3 5 7 9 11 13 15 17 19 ...
2: 1 7 19 37 61 91 127 169 217 271 ...
3: 1 15 65 175 369 671 1105 1695 2465 3439 ...
4: 1 31 211 781 2101 4651 9031 15961 26281 40951 ...
5: 1 63 665 3367 11529 31031 70993 144495 269297 468559 ...
...
The triangle T begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
-------------------------------------------------------------
0: 1
1: 1 1
2: 1 3 1
3: 1 7 5 1
4: 1 15 19 7 1
5: 1 31 65 37 9 1
6: 1 63 211 175 61 11 1
7: 1 127 665 781 369 91 13 1
8: 1 255 2059 3367 2101 671 127 15 1
9: 1 511 6305 14197 11529 4651 1105 169 17 1
10: 1 1023 19171 58975 61741 31031 9031 1695 217 19 1
...
Combinatorial interpretation (cf. A005061 by _Enrique Navarrete_)
The three digits numbers with digits from K ={1, 2, 3, 4} having at least one 4 are:
j=1 (one 4): 114, 141, 411; 224, 242, 422; 334, 343, 433; 124, 214, 142, 241, 412, 421; 134, 314, 143, 341, 413, 431; 234, 243, 423. That is, 3*3 + 3!*3 = 27 = binomial(3, 1)*(4-1)^(3-1) = 3*3^2;
j=2 (twice 4): 144, 414, 441; 244, 424, 442; 344, 434, 443; 3*3 = 9 = binomial(3, 2)*(4-1)^(3-2) = 3*3;
j=3 (thrice 4) 444; 1 = binomial(3, 3)*(4-1)^(3-3).
Together: 27 + 9 + 1 = 37 = A(2, 3) = T(5, 3).
Row sequences of array A (nexus numbers):
A000012,
A005408,
A003215,
A005917(k+1),
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528.
Column sequences of array A:
A000012,
A000225(n+1),
A001047(n+1),
A005061(n+1),
A005060(n+1),
A005062(n+1),
A016169(n+1),
A016177(n+1),
A016185(n+1),
A016189(n+1),
A016195(n+1),
A016197(n+1).
-
egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
cx := n -> series(n!*coeff(ser, x, n), y, 12):
Arow := n -> seq(k!*coeff(cx(n), y, k), k=0..9):
for n from 0 to 5 do Arow(n) od; # Peter Luschny, May 10 2021
-
A[n_, k_] := (k + 1)^(n + 1) - k^(n + 1); Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 10 2021 *)
A341050
Cube array read by upward antidiagonals ignoring zero and empty terms: T(n, k, r) is the number of n-ary strings of length k, containing r consecutive 0's.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 3, 1, 5, 8, 1, 1, 3, 1, 5, 8, 1, 7, 21, 19, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 43, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 47, 1, 11, 65, 208, 295, 94, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 48, 1, 11, 65, 208, 297, 107, 1, 13, 96, 425, 1024, 1037, 201
Offset: 2
For n = 5, k = 6 and r = 4, there are 65 strings: {000000, 000001, 000002, 000003, 000004, 000010, 000011, 000012, 000013, 000014, 000020, 000021, 000022, 000023, 000024, 000030, 000031, 000032, 000033, 000034, 000040, 000041, 000042, 000043, 000044, 010000, 020000, 030000, 040000, 100000, 100001, 100002, 100003, 100004, 110000, 120000, 130000, 140000, 200000, 200001, 200002, 200003, 200004, 210000, 220000, 230000, 240000, 300000, 300001, 300002, 300003, 300004, 310000, 320000, 330000, 340000, 400000, 400001, 400002, 400003, 400004, 410000, 420000, 430000, 440000}
The first seven slices of the tetrahedron (or pyramid) are:
-----------------Slice 1-----------------
1
-----------------Slice 2-----------------
1
1 3
-----------------Slice 3-----------------
1
1 3
1 5 8
-----------------Slice 4-----------------
1
1 3
1 5 8
1 7 21 19
-----------------Slice 5-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 43
-----------------Slice 6-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 47
1 11 65 208 295 94
-----------------Slice 7-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 48
1 11 65 208 297 107
1 13 96 425 1024 1037 201
Cf.
A005408,
A003215,
A005917,
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528,
A022529,
A022530,
A022531,
A022532,
A022533,
A022534,
A022535,
A022536,
A022537,
A022538,
A022539,
A022540 (k=x, r=1, where x is the x-th Nexus Number).
Cf.
A000567 [(k=4, r=2),(k=5, r=3),(k=6, r=4),...,(k=x, r=x-2)].
Cf.
A103532 [(k=6, r=3),(k=7, r=4),(k=8, r=5),...,(k=x, r=x-3)].
-
m[r_, n_] := Normal[With[{p = 1/n}, SparseArray[{Band[{1, 2}] -> p, {i_, 1} /; i <= r -> 1 - p, {r + 1, r + 1} -> 1}]]]; T[n_, k_, r_] := MatrixPower[m[r, n], k][[1, r + 1]]*n^k; DeleteCases[Transpose[PadLeft[Reverse[Table[T[n, k, r], {k, 2, 8}, {r, 2, k}, {n, 2, r}], 2]], 2 <-> 3], 0, 3] // Flatten
A069478
First differences of A069477, successive differences of (n+1)^5 - n^5.
Original entry on oeis.org
360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1
Eli McGowan (ejmcgowa(AT)mail.lakeheadu.ca), Apr 11 2002
A353890
a(n) is the period of the binary sequence {b(m)} defined by b(m) = 1 if (m+1)^n - m^n and (m+2)^n - 2*(m+1)^n + m^n are coprime, 0 otherwise.
Original entry on oeis.org
1, 1, 5, 11, 91, 1247, 3485, 263017, 852841, 1241058127, 74966255, 243641132605417, 181556731572385303, 718802057694183783881, 6582662048285, 943422576750791493013356207217, 487331778345355477261, 607088607861933740557075591887834842297
Offset: 2
For n=2 and n=3, the first and second differences are coprime for all m. Each of their sequences {b(m)} consist only of 1's, which can be described trivially as [1] with a period of 1, so a(2) = a(3) = 1.
For n > 3, the first and second differences are coprime for some m values, but not for all. Each repeating periodic sequence {b(m)} begins at m=1, and can be used to predict what b(m) will be at any higher m value for that power n.
n=4 has the 5-term repeating sequence, beginning at m=1:
[0 0 1 1 1], so a(4) = 5.
The sequence is repeating, so for example, f(41)..f(45) is also [0 0 1 1 1].
n=5 has the 11-term repeating sequence
[1 1 0 1 1 0 1 1 1 1 1]
so a(5) = 11.
n=6 has the 91-term repeating sequence
[0 0 0 0 0 0 1 0 0 0 0 1 1
1 0 0 0 0 0 1 1 0 0 0 0 1
1 1 0 0 0 0 1 1 1 0 0 0 0
1 1 1 0 0 0 0 1 1 1 0 0 0
0 1 1 1 0 0 0 0 1 1 1 0 0
0 0 1 1 0 0 0 0 0 1 1 1 0
0 0 0 1 0 0 0 0 0 0 1 1 1]
so a(6) = 91.
The period for higher n values has yet to be found. If they exist, it seems they would be quite large given the large expansion from 5, 11, to 91.
Example: the 233rd term in the sequence of values for n=6 is calculated by using m=233 and n=6. Define the first difference for the 233rd term as 234^6 - 233^6 = 4164782373647. The second difference for the 233rd term is 235^6 - 2*234^6 + 233^6 = 89948228762. The terms 4164782373647 and 89948228762 share a common factor, so the 233rd term of the sequence for 6th powered terms is denoted 0 (not coprime). Because the 6th powered terms repeat their tendency of being coprime or not every 91 terms, we could instead look at 233 mod 91 = 51, and from the table for n=6 above, the 51st term is 0.
Cf.
A005408,
A007395,
A003215,
A008588,
A005917,
A005914,
A022521,
A068236,
A022522,
A069473,
A069925,
A001045,
A002587.
A385897
a(n) = 1 - 5*(n + 1)^2 + 5*(n + 1)^4.
Original entry on oeis.org
1, 61, 361, 1201, 3001, 6301, 11761, 20161, 32401, 49501, 72601, 102961, 141961, 191101, 252001, 326401, 416161, 523261, 649801, 798001, 970201, 1168861, 1396561, 1656001, 1950001, 2281501, 2653561, 3069361, 3532201, 4045501, 4612801, 5237761, 5924161, 6675901
Offset: 0
-
gf := (-x^4 + 4*x^3 - 66*x^2 - 56*x - 1)/(x - 1)^5:
ser := series(gf, x, 35): seq(coeff(ser, x, n), n = 0..33);
-
a[n_] := With[{h = (n + 1)^2}, 5 (h^2 - h) + 1]; Table[a[n], {n, 0, 33}]
Comments