A254646
Fourth partial sums of seventh powers (A001015).
Original entry on oeis.org
1, 132, 2709, 26432, 168126, 804552, 3136014, 10459968, 30856839, 82407052, 202678203, 465069696, 1005729452, 2066218896, 4058958828, 7664805504, 13974953853, 24692818836, 42415687153, 71020845504, 116186669130, 186085891160, 292296070170, 450981236160, 684408934755
Offset: 1
First differences: 1, 127, 2059, 14197, 61741, ... (A022523)
----------------------------------------------------------------------
The seventh powers: 1, 128, 2187, 16384, 78125, ... (A001015)
----------------------------------------------------------------------
First partial sums: 1, 129, 2316, 18700, 96825, ... (A000541)
Second partial sums: 1, 130, 2446, 21146, 117971, ... (A250212)
Third partial sums: 1, 131, 2577, 23723, 141694, ... (A254641)
Fourth partial sums: 1, 132, 2709, 26432, 168126, ... (this sequence)
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
-
List([1..30], n-> Binomial(n+4,5)*(3*(n+2)^6 -40*(n+2)^4 +151*(n+2)^2 -108)/198); # G. C. Greubel, Aug 28 2019
-
[Binomial(n+4,5)*(3*(n+2)^6 -40*(n+2)^4 +151*(n+2)^2 -108)/198: n in [1..30]]; // G. C. Greubel, Aug 28 2019
-
seq(binomial(n+4,5)*(3*(n+2)^6 -40*(n+2)^4 +151*(n+2)^2 -108)/198, n=1..30); # G. C. Greubel, Aug 28 2019
-
Table[n (1 + n) (2 + n) (3 + n) (4 + n) (48 - 100 n - 89 n^2 + 160 n^3 + 140 n^4 + 36 n^5 + 3 n^6)/23760, {n, 20}] (* or *)
Accumulate[Accumulate[Accumulate[Accumulate[Range[20]^7]]]] (* or *)
CoefficientList[Series[(1 + 120 x + 1191 x^2 + 2416 x^3 + 1191 x^4 + 120 x^5 + x^6)/(- 1 + x)^12, {x, 0, 19}], x]
-
a(n)=n*(1+n)*(2+n)*(3+n)*(4+n)*(48-100*n-89*n^2+160*n^3+140*n^4 +36*n^5+3*n^6)/23760 \\ Charles R Greathouse IV, Oct 07 2015
-
[binomial(n+4,5)*(3*(n+2)^6 -40*(n+2)^4 +151*(n+2)^2 -108)/198 for n in (1..30)] # G. C. Greubel, Aug 28 2019
A255181
Third differences of seventh powers (A001015).
Original entry on oeis.org
1, 125, 1806, 10206, 35406, 92526, 201726, 388206, 682206, 1119006, 1738926, 2587326, 3714606, 5176206, 7032606, 9349326, 12196926, 15651006, 19792206, 24706206, 30483726, 37220526, 45017406, 53980206, 64219806, 75852126, 88998126, 103783806, 120340206
Offset: 0
Third differences: 1, 125, 1806, 10206, 35406, ... (this sequence)
Second differences: 1, 126, 1932, 12138, 47544, ... (A255177)
First differences: 1, 127, 2059, 14197, 61741, ... (A022523)
---------------------------------------------------------------------
The seventh powers: 1, 128, 2187, 16384, 78125, ... (A001015)
---------------------------------------------------------------------
-
[1,125] cat [42*(3-10*n+15*n^2-10*n^3+5*n^4): n in [2..30]]; // Vincenzo Librandi, Mar 18 2015
-
Join[{1, 125}, Table[42 (3 - 10 n + 15 n^2 - 10 n^3 + 5 n^4), {n, 2, 30}]]
A343237
Triangle T obtained from the array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0, by reading antidiagonals upwards.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 19, 7, 1, 1, 31, 65, 37, 9, 1, 1, 63, 211, 175, 61, 11, 1, 1, 127, 665, 781, 369, 91, 13, 1, 1, 255, 2059, 3367, 2101, 671, 127, 15, 1, 1, 511, 6305, 14197, 11529, 4651, 1105, 169, 17, 1
Offset: 0
The array A begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
-------------------------------------------------------------
0: 1 1 1 1 1 1 1 1 1 1 ...
1: 1 3 5 7 9 11 13 15 17 19 ...
2: 1 7 19 37 61 91 127 169 217 271 ...
3: 1 15 65 175 369 671 1105 1695 2465 3439 ...
4: 1 31 211 781 2101 4651 9031 15961 26281 40951 ...
5: 1 63 665 3367 11529 31031 70993 144495 269297 468559 ...
...
The triangle T begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
-------------------------------------------------------------
0: 1
1: 1 1
2: 1 3 1
3: 1 7 5 1
4: 1 15 19 7 1
5: 1 31 65 37 9 1
6: 1 63 211 175 61 11 1
7: 1 127 665 781 369 91 13 1
8: 1 255 2059 3367 2101 671 127 15 1
9: 1 511 6305 14197 11529 4651 1105 169 17 1
10: 1 1023 19171 58975 61741 31031 9031 1695 217 19 1
...
Combinatorial interpretation (cf. A005061 by _Enrique Navarrete_)
The three digits numbers with digits from K ={1, 2, 3, 4} having at least one 4 are:
j=1 (one 4): 114, 141, 411; 224, 242, 422; 334, 343, 433; 124, 214, 142, 241, 412, 421; 134, 314, 143, 341, 413, 431; 234, 243, 423. That is, 3*3 + 3!*3 = 27 = binomial(3, 1)*(4-1)^(3-1) = 3*3^2;
j=2 (twice 4): 144, 414, 441; 244, 424, 442; 344, 434, 443; 3*3 = 9 = binomial(3, 2)*(4-1)^(3-2) = 3*3;
j=3 (thrice 4) 444; 1 = binomial(3, 3)*(4-1)^(3-3).
Together: 27 + 9 + 1 = 37 = A(2, 3) = T(5, 3).
Row sequences of array A (nexus numbers):
A000012,
A005408,
A003215,
A005917(k+1),
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528.
Column sequences of array A:
A000012,
A000225(n+1),
A001047(n+1),
A005061(n+1),
A005060(n+1),
A005062(n+1),
A016169(n+1),
A016177(n+1),
A016185(n+1),
A016189(n+1),
A016195(n+1),
A016197(n+1).
-
egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
cx := n -> series(n!*coeff(ser, x, n), y, 12):
Arow := n -> seq(k!*coeff(cx(n), y, k), k=0..9):
for n from 0 to 5 do Arow(n) od; # Peter Luschny, May 10 2021
-
A[n_, k_] := (k + 1)^(n + 1) - k^(n + 1); Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 10 2021 *)
A341050
Cube array read by upward antidiagonals ignoring zero and empty terms: T(n, k, r) is the number of n-ary strings of length k, containing r consecutive 0's.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 3, 1, 5, 8, 1, 1, 3, 1, 5, 8, 1, 7, 21, 19, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 43, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 47, 1, 11, 65, 208, 295, 94, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 48, 1, 11, 65, 208, 297, 107, 1, 13, 96, 425, 1024, 1037, 201
Offset: 2
For n = 5, k = 6 and r = 4, there are 65 strings: {000000, 000001, 000002, 000003, 000004, 000010, 000011, 000012, 000013, 000014, 000020, 000021, 000022, 000023, 000024, 000030, 000031, 000032, 000033, 000034, 000040, 000041, 000042, 000043, 000044, 010000, 020000, 030000, 040000, 100000, 100001, 100002, 100003, 100004, 110000, 120000, 130000, 140000, 200000, 200001, 200002, 200003, 200004, 210000, 220000, 230000, 240000, 300000, 300001, 300002, 300003, 300004, 310000, 320000, 330000, 340000, 400000, 400001, 400002, 400003, 400004, 410000, 420000, 430000, 440000}
The first seven slices of the tetrahedron (or pyramid) are:
-----------------Slice 1-----------------
1
-----------------Slice 2-----------------
1
1 3
-----------------Slice 3-----------------
1
1 3
1 5 8
-----------------Slice 4-----------------
1
1 3
1 5 8
1 7 21 19
-----------------Slice 5-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 43
-----------------Slice 6-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 47
1 11 65 208 295 94
-----------------Slice 7-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 48
1 11 65 208 297 107
1 13 96 425 1024 1037 201
Cf.
A005408,
A003215,
A005917,
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528,
A022529,
A022530,
A022531,
A022532,
A022533,
A022534,
A022535,
A022536,
A022537,
A022538,
A022539,
A022540 (k=x, r=1, where x is the x-th Nexus Number).
Cf.
A000567 [(k=4, r=2),(k=5, r=3),(k=6, r=4),...,(k=x, r=x-2)].
Cf.
A103532 [(k=6, r=3),(k=7, r=4),(k=8, r=5),...,(k=x, r=x-3)].
-
m[r_, n_] := Normal[With[{p = 1/n}, SparseArray[{Band[{1, 2}] -> p, {i_, 1} /; i <= r -> 1 - p, {r + 1, r + 1} -> 1}]]]; T[n_, k_, r_] := MatrixPower[m[r, n], k][[1, r + 1]]*n^k; DeleteCases[Transpose[PadLeft[Reverse[Table[T[n, k, r], {k, 2, 8}, {r, 2, k}, {n, 2, r}], 2]], 2 <-> 3], 0, 3] // Flatten
A259907
Fifth differences of 7th powers (A001015).
Original entry on oeis.org
1, 123, 1557, 6719, 16800, 31920, 52080, 77280, 107520, 142800, 183120, 228480, 278880, 334320, 394800, 460320, 530880, 606480, 687120, 772800, 863520, 959280, 1060080, 1165920, 1276800, 1392720, 1513680, 1639680, 1770720, 1906800, 2047920, 2194080, 2345280, 2501520, 2662800
Offset: 0
1 128 2187 16384 78125 279936 823543 2097152 4782969 (seventh powers)
1 127 2059 14197 61741 201811 543607 1273609 2685817 (first differences)
1 126 1932 12138 47544 140070 341796 730002 1412208 (second differences)
1 125 1806 10206 35406 92526 201726 388206 682206 (third differences)
1 124 1681 8400 25200 57120 109200 186480 294000 (fourth differences)
1 123 1557 6719 16800 31920 52080 77280 107520 (here)
- John H. Conway and Richard K. Guy, The Book of Numbers. New York: Springer-Verlag, pp. 30-32, 1996.
- Kiran Parulekar. Amazing Properties of Squares and Their Calculations. Kiran Anil Parulekar, 2012.
- Bag, Amulya Kumar (1966). "Binomial theorem in ancient India". Indian J. History Sci 1 (1): 68-74.
- Ronald Graham and Donald Knuth, Patashnik, Oren (1994). "(5) Binomial Coefficients". Concrete Mathematics (2nd ed.). Addison Wesley. pp. 153-256.
-
[1,123,1557,6719] cat [840*(3*n^2-9*n+8): n in [4..40]]; // Bruno Berselli, Jul 16 2015
-
Join[{1, 123, 1557, 6719}, Table[840 (3 n^2 - 9 n + 8), {n, 4, 40}]]
-
[1,123,1557,6719]+[840*(3*n^2-9*n+8) for n in (4..40)] # Bruno Berselli, Jul 16 2015
Edited by Editors of the OEIS, Jul 16 2015
Comments