A303188
a(n) = [x^n] Product_{k=1..n} (1 + (n - k + 1)*x^k).
Original entry on oeis.org
1, 1, 1, 7, 9, 23, 148, 221, 526, 1040, 6767, 9664, 23456, 43943, 91363, 499028, 736410, 1650395, 3107540, 6210372, 10819270, 57864166, 80663444, 179915133, 324882691, 640398244, 1087149284, 2039724322, 9121580902, 12913282685, 27250167385, 48645989650, 92634730208, 156124357449
Offset: 0
a(0) = 1;
a(1) = [x^1] (1 + x) = 1;
a(2) = [x^2] (1 + 2*x)*(1 + x^2) = 1;
a(3) = [x^3] (1 + 3*x)*(1 + 2*x^2)*(1 + x^3) = 7;
a(4) = [x^4] (1 + 4*x)*(1 + 3*x^2)*(1 + 2*x^3)*(1 + x^4) = 9;
a(5) = [x^5] (1 + 5*x)*(1 + 4*x^2)*(1 + 3*x^3)*(1 + 2*x^4)*(1 + x^5) = 23, etc.
...
The table of coefficients of x^k in expansion of Product_{k=1..n} (1 + (n - k + 1)*x^k) begins:
n = 0: (1), 0, 0, 0, 0, 0, ...
n = 1: 1, (1), 0, 0, 0, 0, ...
n = 2: 1, 2, (1), 2, 0, 0 ...
n = 3: 1, 3, 2, (7), 3, 2, ...
n = 4: 1, 4, 3, 14, (9), 10, ...
n = 5: 1, 5, 4, 23, 17, (23), ...
-
Table[SeriesCoefficient[Product[(1 + (n - k + 1) x^k), {k, 1, n}], {x, 0, n}], {n, 0, 33}]
A318248
Expansion of Product_{k>=1} (1 + Fibonacci(k)*x^k).
Original entry on oeis.org
1, 1, 1, 3, 5, 10, 18, 35, 63, 123, 220, 411, 750, 1387, 2498, 4649, 8308, 15150, 27446, 49638, 88754, 161280, 287831, 516770, 924956, 1655166, 2944850, 5272056, 9348047, 16631195, 29569572, 52421323, 92665614, 164437988, 290243745, 512649342, 904774082
Offset: 0
-
nmax = 50; CoefficientList[Series[Product[1 + Fibonacci[k]*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 50; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += Fibonacci[k]*poly[[j - k + 1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly
A318264
Expansion of Product_{k>=1} (1 + C(k)*x^k), where C(k) is the Catalan number A000108.
Original entry on oeis.org
1, 1, 2, 7, 19, 66, 212, 743, 2487, 9012, 31177, 113775, 404584, 1490726, 5376676, 20028981, 73068861, 273659672, 1009921813, 3801386137, 14125670266, 53477758556, 199950414035, 759566205693, 2857261603610, 10889590477287, 41136917417501, 157329747348492
Offset: 0
-
C:= proc(n) option remember; binomial(n+n, n)/(n+1) end:
b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Aug 23 2019
-
nmax = 40; CoefficientList[Series[Product[1+CatalanNumber[k]*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += CatalanNumber[k]*poly[[j - k + 1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly
A325515
Sum of sums of omegas of the parts over all strict integer partitions of n.
Original entry on oeis.org
0, 0, 1, 2, 3, 5, 8, 11, 14, 22, 29, 37, 50, 63, 81, 106, 129, 160, 203, 246, 303, 373, 449, 541, 654, 782, 932, 1116, 1322, 1559, 1848, 2167, 2537, 2978, 3470, 4041, 4706, 5449, 6303, 7291, 8402, 9665, 11117, 12744, 14592, 16708, 19062, 21730, 24757, 28141
Offset: 0
Cf.
A001222,
A003963,
A015716,
A015723,
A022629,
A056239,
A066189,
A112798,
A147655,
A246867,
A325504,
A325506.
-
Table[Sum[Total[PrimeOmega/@s],{s,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,30}]
A032309
"EFK" (unordered, size, unlabeled) transform of 2,4,6,8,...
Original entry on oeis.org
1, 2, 4, 14, 20, 50, 112, 190, 328, 666, 1340, 2038, 3740, 5954, 10792, 19542, 30048, 48290, 80164, 124694, 204484, 347610, 515184, 810750, 1240296, 1932722, 2887820, 4557838, 7126652, 10463330, 15768168, 23499934
Offset: 0
-
nmax=40; CoefficientList[Series[Product[(1+2*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 19 2015 *)
-
seq(n)={Vec(prod(k=1, n, 1 + 2*k*x^k + O(x*x^n)))} \\ Andrew Howroyd, Sep 20 2018
A265955
Expansion of Product_{k>=1} (1 + 2*k*x^k)/(1 - 2*k*x^k).
Original entry on oeis.org
1, 4, 16, 60, 192, 596, 1776, 5020, 13760, 36916, 96336, 246316, 619392, 1530548, 3729392, 8976364, 21337920, 50195268, 116977232, 270114764, 618712640, 1406843940, 3176387120, 7126185948, 15894370816, 35253947940, 77796242768, 170868178332, 373606888128
Offset: 0
-
nmax=40; CoefficientList[Series[Product[(1+2*k*x^k)/(1-2*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A267008
Expansion of Product_{k>=1} (1 + (k+1)*x^k).
Original entry on oeis.org
1, 2, 3, 10, 13, 28, 58, 90, 146, 260, 481, 688, 1168, 1748, 2863, 4726, 6938, 10412, 16140, 23746, 35702, 55812, 79032, 116758, 168779, 247006, 350310, 513410, 744286, 1045466, 1485685, 2098780, 2935416, 4137878, 5746618, 8027612, 11343706, 15487222, 21418682
Offset: 0
-
b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n$2):
seq(a(n), n=0..42); # Alois P. Heinz, Aug 15 2019
-
nmax = 50; CoefficientList[Series[Product[1+(k+1)*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 50; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = 2; Do[Do[poly[[j+1]] += (k+1)*poly[[j-k+1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly
A285240
Expansion of Product_{k>=1} (1 + k*x^k)^(k^2).
Original entry on oeis.org
1, 1, 8, 35, 115, 429, 1425, 4803, 15398, 48940, 151046, 459000, 1373219, 4037721, 11723911, 33566828, 94993571, 265722551, 735543433, 2015558930, 5471271099, 14719853084, 39266487114, 103908002173, 272855152096, 711272144097, 1841162650896, 4734074846631
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[(1 + k*x^k)^(k^2), {k,1,nmax}], {x,0,nmax}], x]
nmax = 40; s = 1 + x; Do[s*=Sum[Binomial[k^2, j]*k^j*x^(j*k), {j, 0, Floor[nmax/k] + 1}]; s = Select[Expand[s], Exponent[#, x] <= nmax &];, {k, 2, nmax}]; CoefficientList[s, x]
A302831
Expansion of (1/(1 - x))*Product_{k>=1} (1 + k*x^k).
Original entry on oeis.org
1, 2, 4, 9, 16, 31, 56, 99, 163, 283, 469, 757, 1220, 1915, 3020, 4748, 7273, 11014, 16789, 25033, 37480, 55782, 82206, 120033, 174762, 253092, 364276, 523814, 749438, 1064853, 1509561, 2128227, 2986392, 4186093, 5832169, 8121130, 11272081, 15576076, 21446615, 29479186, 40360980
Offset: 0
-
b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, i*b(n-i, i-1))))
end:
a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+b(n$2)) end:
seq(a(n), n=0..40); # Alois P. Heinz, Apr 13 2018
-
nmax = 40; CoefficientList[Series[1/(1 - x) Product[(1 + k x^k), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[1/(1 - x) Exp[Sum[Sum[(-1)^(j + 1) k^j x^(j k)/j, {k, 1, nmax}], {j, 1, nmax}]], {x, 0, nmax}], x]
A306919
Sum over all partitions of n into distinct parts of the power tower evaluation x^y^...^z, where x, y, ..., z are the parts in increasing order.
Original entry on oeis.org
1, 1, 2, 4, 5, 14, 24, 122, 318, 2417851639229258349414245, 14134776518227074636666380005943348126619871175004951664972849610340964762
Offset: 0
a(0) = 1 because the empty partition () has no parts, the exponentiation operator ^ is right-associative, and 1 is the right identity of exponentiation.
a(6) = 1^2^3 + 2^4 + 1^5 + 6 = 1 + 16 + 1 + 6 = 24.
-
d:= proc(l) local i; for i to nops(l)-1 do
if l[i]=l[i+1] then return fi od; l
end:
f:= l-> `if`(l=[], 1, l[1]^f(subsop(1=(), l))):
a:= n-> add(f(l), l=map(l->d(sort(l, `<`)), combinat[partition](n))):
seq(a(n), n=0..11);
-
d[l_] := Module[{i}, For[i = 1, i <= Length[l]-1 , i++, If[l[[i]] == l[[i+1]], Return[]]]; l];
f[l_] := If[l == {}, 1, l[[1]]^f[Delete[l, 1]]];
a[n_] := Sum[f[l], {l, Sort /@ Select[IntegerPartitions[n], Length@# == Length @ Union@#&]}];
a /@ Range[0, 11] (* Jean-François Alcover, May 03 2020, after Maple *)
Comments