cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 75 results. Next

A303188 a(n) = [x^n] Product_{k=1..n} (1 + (n - k + 1)*x^k).

Original entry on oeis.org

1, 1, 1, 7, 9, 23, 148, 221, 526, 1040, 6767, 9664, 23456, 43943, 91363, 499028, 736410, 1650395, 3107540, 6210372, 10819270, 57864166, 80663444, 179915133, 324882691, 640398244, 1087149284, 2039724322, 9121580902, 12913282685, 27250167385, 48645989650, 92634730208, 156124357449
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2018

Keywords

Examples

			a(0) = 1;
a(1) = [x^1] (1 + x) = 1;
a(2) = [x^2] (1 + 2*x)*(1 + x^2) = 1;
a(3) = [x^3] (1 + 3*x)*(1 + 2*x^2)*(1 + x^3) = 7;
a(4) = [x^4] (1 + 4*x)*(1 + 3*x^2)*(1 + 2*x^3)*(1 + x^4) = 9;
a(5) = [x^5] (1 + 5*x)*(1 + 4*x^2)*(1 + 3*x^3)*(1 + 2*x^4)*(1 + x^5) = 23, etc.
...
The table of coefficients of x^k in expansion of Product_{k=1..n} (1 + (n - k + 1)*x^k) begins:
n = 0: (1), 0,  0,   0,   0,   0,  ...
n = 1:  1, (1), 0,   0,   0,   0,  ...
n = 2:  1,  2, (1),  2,   0,   0   ...
n = 3:  1,  3,  2,  (7),  3,   2,  ...
n = 4:  1,  4,  3,  14,  (9), 10,  ...
n = 5:  1,  5,  4,  23,  17, (23), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + (n - k + 1) x^k), {k, 1, n}], {x, 0, n}], {n, 0, 33}]

A318248 Expansion of Product_{k>=1} (1 + Fibonacci(k)*x^k).

Original entry on oeis.org

1, 1, 1, 3, 5, 10, 18, 35, 63, 123, 220, 411, 750, 1387, 2498, 4649, 8308, 15150, 27446, 49638, 88754, 161280, 287831, 516770, 924956, 1655166, 2944850, 5272056, 9348047, 16631195, 29569572, 52421323, 92665614, 164437988, 290243745, 512649342, 904774082
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1 + Fibonacci[k]*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += Fibonacci[k]*poly[[j - k + 1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly

Formula

From Vaclav Kotesovec, Aug 24 2018: (Start)
a(n) ~ c * A000045(n) * exp(r*sqrt(n)) / n^(3/4) ~ c * exp(r*sqrt(n)) * phi^n / (sqrt(5) * n^(3/4)), where r = 2*sqrt(-polylog(2, -1/sqrt(5))) = 1.273105657580344020952907652385896290122122879833..., c = 0.4521555113342405268628694407039776... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
Equivalently, r = 2*sqrt(Pi^2/6 + log(5)^2/8 + polylog(2, -sqrt(5))). (End)

A318264 Expansion of Product_{k>=1} (1 + C(k)*x^k), where C(k) is the Catalan number A000108.

Original entry on oeis.org

1, 1, 2, 7, 19, 66, 212, 743, 2487, 9012, 31177, 113775, 404584, 1490726, 5376676, 20028981, 73068861, 273659672, 1009921813, 3801386137, 14125670266, 53477758556, 199950414035, 759566205693, 2857261603610, 10889590477287, 41136917417501, 157329747348492
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2018

Keywords

Crossrefs

Programs

  • Maple
    C:= proc(n) option remember; binomial(n+n, n)/(n+1) end:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1+CatalanNumber[k]*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += CatalanNumber[k]*poly[[j - k + 1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly

Formula

a(n) ~ c * A000108(n) ~ c * 4^n / (sqrt(Pi) * n^(3/2)), where c = Product_{k>=1} (1 + C(k)/4^k) = 2.608465265690846547082817204714986077801494... - Vaclav Kotesovec, Aug 24 2018

A325515 Sum of sums of omegas of the parts over all strict integer partitions of n.

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 8, 11, 14, 22, 29, 37, 50, 63, 81, 106, 129, 160, 203, 246, 303, 373, 449, 541, 654, 782, 932, 1116, 1322, 1559, 1848, 2167, 2537, 2978, 3470, 4041, 4706, 5449, 6303, 7291, 8402, 9665, 11117, 12744, 14592, 16708, 19062, 21730, 24757, 28141
Offset: 0

Views

Author

Gus Wiseman, May 07 2019

Keywords

Comments

Also omega of the product of products of parts over all strict integer partitions of n.
The omega of n is A001222(n), the number of prime factors of n counted with multiplicity.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Total[PrimeOmega/@s],{s,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,30}]

Formula

a(n) = A001222(A325504(n)).

A032309 "EFK" (unordered, size, unlabeled) transform of 2,4,6,8,...

Original entry on oeis.org

1, 2, 4, 14, 20, 50, 112, 190, 328, 666, 1340, 2038, 3740, 5954, 10792, 19542, 30048, 48290, 80164, 124694, 204484, 347610, 515184, 810750, 1240296, 1932722, 2887820, 4557838, 7126652, 10463330, 15768168, 23499934
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[(1+2*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 19 2015 *)
  • PARI
    seq(n)={Vec(prod(k=1, n, 1 + 2*k*x^k + O(x*x^n)))} \\ Andrew Howroyd, Sep 20 2018

Formula

G.f.: Product_{k >= 1} (1 + 2*k*x^k).

Extensions

a(0)=1 prepended by Andrew Howroyd, Sep 20 2018

A265955 Expansion of Product_{k>=1} (1 + 2*k*x^k)/(1 - 2*k*x^k).

Original entry on oeis.org

1, 4, 16, 60, 192, 596, 1776, 5020, 13760, 36916, 96336, 246316, 619392, 1530548, 3729392, 8976364, 21337920, 50195268, 116977232, 270114764, 618712640, 1406843940, 3176387120, 7126185948, 15894370816, 35253947940, 77796242768, 170868178332, 373606888128
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[(1+2*k*x^k)/(1-2*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * n * 2^n, where c = 2 * Product_{m>=3} (1 + 2/(2^(m-1)/m - 1)) = 193.4198278838721371054040810054045645734538119720773785523616944906739...

A267008 Expansion of Product_{k>=1} (1 + (k+1)*x^k).

Original entry on oeis.org

1, 2, 3, 10, 13, 28, 58, 90, 146, 260, 481, 688, 1168, 1748, 2863, 4726, 6938, 10412, 16140, 23746, 35702, 55812, 79032, 116758, 168779, 247006, 350310, 513410, 744286, 1045466, 1485685, 2098780, 2935416, 4137878, 5746618, 8027612, 11343706, 15487222, 21418682
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 08 2016

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n$2):
    seq(a(n), n=0..42);  # Alois P. Heinz, Aug 15 2019
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1+(k+1)*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = 2; Do[Do[poly[[j+1]] += (k+1)*poly[[j-k+1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly

A285240 Expansion of Product_{k>=1} (1 + k*x^k)^(k^2).

Original entry on oeis.org

1, 1, 8, 35, 115, 429, 1425, 4803, 15398, 48940, 151046, 459000, 1373219, 4037721, 11723911, 33566828, 94993571, 265722551, 735543433, 2015558930, 5471271099, 14719853084, 39266487114, 103908002173, 272855152096, 711272144097, 1841162650896, 4734074846631
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + k*x^k)^(k^2), {k,1,nmax}], {x,0,nmax}], x]
    nmax = 40; s = 1 + x; Do[s*=Sum[Binomial[k^2, j]*k^j*x^(j*k), {j, 0, Floor[nmax/k] + 1}]; s = Select[Expand[s], Exponent[#, x] <= nmax &];, {k, 2, nmax}]; CoefficientList[s, x]

A302831 Expansion of (1/(1 - x))*Product_{k>=1} (1 + k*x^k).

Original entry on oeis.org

1, 2, 4, 9, 16, 31, 56, 99, 163, 283, 469, 757, 1220, 1915, 3020, 4748, 7273, 11014, 16789, 25033, 37480, 55782, 82206, 120033, 174762, 253092, 364276, 523814, 749438, 1064853, 1509561, 2128227, 2986392, 4186093, 5832169, 8121130, 11272081, 15576076, 21446615, 29479186, 40360980
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 13 2018

Keywords

Comments

Partial sums of A022629.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, i*b(n-i, i-1))))
        end:
    a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+b(n$2)) end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Apr 13 2018
  • Mathematica
    nmax = 40; CoefficientList[Series[1/(1 - x) Product[(1 + k x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[1/(1 - x) Exp[Sum[Sum[(-1)^(j + 1) k^j x^(j k)/j, {k, 1, nmax}], {j, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: (1/(1 - x))*exp(Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j).

A306919 Sum over all partitions of n into distinct parts of the power tower evaluation x^y^...^z, where x, y, ..., z are the parts in increasing order.

Original entry on oeis.org

1, 1, 2, 4, 5, 14, 24, 122, 318, 2417851639229258349414245, 14134776518227074636666380005943348126619871175004951664972849610340964762
Offset: 0

Views

Author

Alois P. Heinz, Mar 16 2019

Keywords

Examples

			a(0) = 1 because the empty partition () has no parts, the exponentiation operator ^ is right-associative, and 1 is the right identity of exponentiation.
a(6) = 1^2^3 + 2^4 + 1^5 + 6 = 1 + 16 + 1 + 6 = 24.
		

Crossrefs

Programs

  • Maple
    d:= proc(l) local i; for i to nops(l)-1 do
           if l[i]=l[i+1] then return fi od; l
        end:
    f:= l-> `if`(l=[], 1, l[1]^f(subsop(1=(), l))):
    a:= n-> add(f(l), l=map(l->d(sort(l, `<`)), combinat[partition](n))):
    seq(a(n), n=0..11);
  • Mathematica
    d[l_] := Module[{i}, For[i = 1, i <= Length[l]-1 , i++, If[l[[i]] == l[[i+1]], Return[]]]; l];
    f[l_] := If[l == {}, 1, l[[1]]^f[Delete[l, 1]]];
    a[n_] := Sum[f[l], {l, Sort /@ Select[IntegerPartitions[n], Length@# == Length @ Union@#&]}];
    a /@ Range[0, 11] (* Jean-François Alcover, May 03 2020, after Maple *)
Previous Showing 41-50 of 75 results. Next