cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 89 results. Next

A152677 Subsequence of odd terms in A000203 (sum-of-divisors function sigma), in the order in which they occur and with repetitions.

Original entry on oeis.org

1, 3, 7, 15, 13, 31, 39, 31, 63, 91, 57, 93, 127, 195, 121, 171, 217, 133, 255, 403, 363, 183, 399, 465, 403, 399, 511, 819, 307, 847, 549, 381, 855, 961, 741, 1209, 931, 1023, 553, 1651, 921, 781, 1815, 1281, 1143, 1093, 1767, 1953, 871, 2223, 2821, 993, 1995
Offset: 1

Views

Author

Omar E. Pol, Dec 10 2008

Keywords

Comments

Equivalently: subsequence of A000203 (sigma) with indices equal to a square or twice a square (A028982).
See A060657 for the set of odd values in the range of the sigma function, i.e., the list of odd values in ordered by increasing size and without repetitions.

Crossrefs

Cf. A000203 (sigma = sum-of-divisors function), A152678 (even terms in A000203), A028982 (squares and twice the squares).
See A062700 and A023195 for the subsequence resp. subset of primes; A023194 for the indices of A000203 which yield these primes.
Cf. A002117.

Programs

  • Magma
    [d:k in [1..1000]|IsOdd(d) where d is DivisorSigma(1,k)]; // Marius A. Burtea, Jan 09 2020
  • Mathematica
    Select[DivisorSigma[1, Range[1000]], OddQ[#] &] (* Giovanni Resta, Jan 08 2020 *)
    With[{max = 1000}, DivisorSigma[1, Union[Range[Sqrt[max]]^2, 2*Range[Sqrt[max/2]]^2]]] (* Amiram Eldar, Nov 28 2023 *)
  • PARI
    A152677_upto(lim)=apply(sigma,vecsort(concat(vector(sqrtint(lim\1), i, i^2), vector(sqrtint(lim\2), i, 2*i^2)))) \\ Gives [a(n) = sigma(k) with k = A028982(n) <= lim]. - Charles R Greathouse IV, Feb 15 2013, corrected by M. F. Hasler, Jan 08 2020
    

Formula

a(n) = A000203(A028982(n)). - R. J. Mathar, Dec 12 2008
Sum_{k=1..n} a(k) ~ c * n^3, where c = (16-10*sqrt(2))*zeta(3)/Pi^2 = 0.226276... . - Amiram Eldar, Nov 28 2023

Extensions

Extended by R. J. Mathar, Dec 12 2008
Edited and definition reworded by M. F. Hasler, Jan 08 2020

A225534 Numbers whose sum of cubed digits is prime.

Original entry on oeis.org

11, 101, 110, 111, 113, 115, 122, 124, 128, 131, 139, 142, 146, 148, 151, 155, 164, 166, 182, 184, 193, 199, 212, 214, 218, 221, 223, 227, 232, 236, 238, 241, 245, 254, 256, 263, 265, 269, 272, 278, 281, 283, 287, 289, 296, 298, 311, 319, 322, 326, 328, 335
Offset: 1

Views

Author

Keywords

Comments

Note that 11 is the only two-digit number in the sequence.
a(n) ~ n. For 414 < n < 10000, 6.38*n - 528 provides an estimate of a(n) to within 6%.

Examples

			139 is in the sequence because 1^3 + 3^3 + 9^3 = 757, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[350],PrimeQ[Total[IntegerDigits[#]^3]]&] (* Harvey P. Dale, Mar 16 2016 *)
  • R
    digcubesum<-function(x) sum(as.numeric(strsplit(as.character(x),split="")[[1]])^3); library(gmp);
    which(sapply(1:1000,function(x) isprime(digcubesum(x))>0))

A347877 Numbers k for which A003415(sigma(k)) is odd.

Original entry on oeis.org

2, 4, 5, 9, 10, 13, 16, 17, 20, 25, 26, 29, 32, 34, 37, 40, 41, 45, 52, 53, 58, 61, 64, 68, 72, 73, 74, 80, 82, 89, 90, 97, 98, 101, 104, 106, 109, 113, 116, 117, 122, 128, 136, 137, 146, 148, 149, 153, 157, 160, 162, 164, 173, 178, 180, 181, 193, 194, 196, 197, 200, 202, 208, 212, 218, 226, 229, 232, 233, 234
Offset: 1

Views

Author

Antti Karttunen, Sep 19 2021

Keywords

Comments

Numbers k such that A342925(k) == 1 (mod 2).
Squares present in this sequence are terms of A347885 squared. (There are no even squares present, see A235991 for the explanation).

Crossrefs

Cf. A000203, A003415, A023194 (subsequence), A235991, A342925, A347872, A347873, A347885, A347878 (complement).
Cf. A347870 (characteristic function), A349909 (its partial sums).

Programs

  • Mathematica
    ad[1] = 0; ad[n_] := n * Total@(Last[#]/First[#]& /@ FactorInteger[n]); Select[Range[234], OddQ[ad[DivisorSigma[1, #]]] &] (* Amiram Eldar, Sep 19 2021 *)

Formula

For all n >= 1, A349909(a(n)) = n. - Antti Karttunen, Feb 23 2022

A371418 The largest aliquot divisor of the sum of divisors of n; a(1) = 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 4, 5, 1, 9, 6, 14, 7, 12, 12, 1, 9, 13, 10, 21, 16, 18, 12, 30, 1, 21, 20, 28, 15, 36, 16, 21, 24, 27, 24, 13, 19, 30, 28, 45, 21, 48, 22, 42, 39, 36, 24, 62, 19, 31, 36, 49, 27, 60, 36, 60, 40, 45, 30, 84, 31, 48, 52, 1, 42, 72, 34, 63, 48, 72
Offset: 1

Views

Author

Amiram Eldar, Mar 23 2024

Keywords

Comments

Carmichael (1921) defined this arithmetic function for the purpose of studying periodic chains that are formed by repeatedly applying the mapping x -> a(x) starting at a given positive integer. This results in a sequence that is analogous to an aliquot sequence.
Periodic chains of cycle 1 are the fixed points of this sequence. 1 and the even perfect numbers (the even terms of A000396) are fixed points. Are there any other numbers k such that a(k) = k?
If a(k) = k and k is even, then a(k) is even and so is sigma(k), and therefore sigma(k) = 2*k and k is an even perfect number. If k is odd, then it is an odd multiperfect number, and no odd multiperfect number above 1 is known.
More specifically, if a(k) = k and k is odd, then k must be a square, and an m-multiperfect number (number k such that sigma(k) = m * k), with m being an odd prime number that is the least prime factor of sigma(k). For example, if there is an odd triperfect number (A005820) then it is a fixed point of this sequence.
Periodic chains of cycle 2 are amicable pairs (A371419 and A371420). Are there any longer cycles?

Examples

			The sum of the divisors of 3 is 1 + 3 = 4. The divisors of 4 are 1, 2, 4. 2 is the largest aliquot divisor of 4. Therefore a(3) = 2.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := n/FactorInteger[n][[1, 1]]; a[n_] := r[DivisorSigma[1, n]]; Array[a, 100]
  • PARI
    a(n) = {my(s = sigma(n)); if(s == 1, 1, s/factor(s)[1, 1]);}

Formula

a(n) = A032742(A000203(n)).
a(n) = A000203(n)/A071189(n).
a(n) = A000203(n)/2 if n is in A028983 (i.e., n is not in A028982).
a(k) = 1 if and only if k = 1 or k is in A023194.

A063783 Numbers k such that the sum of the cubes of divisors of k is a prime.

Original entry on oeis.org

4, 9, 121, 36481, 72361, 146689, 259081, 654481, 683929, 786769, 1985281, 2036329, 3193369, 3636649, 3798601, 4583881, 5031049, 5470921, 5555449, 6135529, 6713281, 7284601, 7778521, 16589329, 20403289, 21557449, 22915369, 26739241, 27426169, 30261001, 30591961
Offset: 1

Views

Author

Labos Elemer, Aug 17 2001

Keywords

Comments

Solutions to sigma_3(x) = prime.

Examples

			All these terms are squares of primes {2, 3, 11, 191, 269, 383, 509, 809, 827, 887, 1409, 1427, 1787, 1907, 1949, 2141, 2243, 2339, 2357, 2477, 2591, 2699, 2789, ...}, so their sigma_3(p^2) = p^6 + p^3 + 1 has polynomial of degree 6.
sigma_3(9) = 1 + 27 + 729 = 757 is a prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[500]]^2, PrimeQ@ DivisorSigma[3, #] &] (* Michael De Vlieger, Jul 16 2017 *)
  • PARI
    { n=0; p=0; for (m=1, 10^9, p=nextprime(p+1); if(isprime(p^6 + p^3 + 1), write("b063783.txt", n++, " ", p^2); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 31 2009

Formula

a(n) = A066100(n)^2. - Amiram Eldar, Aug 16 2024

A065061 Numbers k such that sigma(k) - tau(k) is a prime.

Original entry on oeis.org

3, 8, 162, 512, 1250, 8192, 31250, 32768, 41472, 663552, 2531250, 3748322, 5120000, 6837602, 7558272, 8000000, 15780962, 33554432, 35701250, 42762752, 45334242, 68024448, 75031250, 78125000, 91125000, 137149922, 243101250, 512000000, 907039232, 959570432
Offset: 1

Views

Author

Jason Earls, Nov 06 2001

Keywords

Comments

From Kevin P. Thompson, Jun 20 2022: (Start)
Terms greater than 3 must be twice a square (see A064205).
No terms are congruent to 4 or 6 (mod 10) (see A064205).
(End)

Examples

			162 is a term since sigma(162) - tau(162) = 363 - 10 = 353, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ DivisorSigma[1, n] - DivisorSigma[0, n]], Print[n]], {n, 1, 10^7}]
  • PARI
    { n=0; for (m=1, 10^9, if (isprime(sigma(m) - numdiv(m)), write("b065061.txt", n++, " ", m); if (n==100, return)) ) } \\ Harry J. Smith, Oct 05 2009
    
  • Python
    from itertools import count, islice
    from sympy import isprime, divisor_sigma as s, divisor_count as t
    def agen(): # generator of terms
        yield 3
        yield from (k for k in (2*i*i for i in count(1)) if isprime(s(k)-t(k)))
    print(list(islice(agen(), 30))) # Michael S. Branicky, Jun 20 2022

Extensions

a(17)-a(28) from Harry J. Smith, Oct 05 2009
a(29)-a(30) from Kevin P. Thompson, Jun 20 2022

A105402 Positive integers k such that the prime factors of sigma(k) are a subset of the prime factors of k.

Original entry on oeis.org

1, 6, 28, 30, 42, 66, 84, 102, 120, 138, 186, 210, 270, 282, 318, 330, 364, 420, 426, 462, 496, 510, 546, 570, 642, 672, 690, 714, 762, 840, 868, 870, 924, 930, 966, 1080, 1092, 1122, 1146, 1302, 1320, 1410, 1428, 1488, 1518, 1590, 1638, 1722, 1770, 1782, 1890
Offset: 1

Views

Author

Walter Kehowski, May 01 2005

Keywords

Comments

Also numbers k such that k^k/sigma(k) is integral. - Vicente Izquierdo Gomez, Jan 04 2013.
Pollack and Pomerance call these numbers "prime-deficient numbers". - Amiram Eldar, Jun 02 2020

Examples

			102 is a term since 102 = 2*3*17 and sigma(102) = 2^3*3^3.
		

Crossrefs

Programs

  • Maple
    A:=select(proc(z) numtheory[factorset](sigma(z)) subset numtheory[factorset](z) end,[$1..100000]); has 716 members.
  • Mathematica
    Select[Range[2000],IntegerQ[#^#/DivisorSigma[1,#]] &] (* Vicente Izquierdo Gomez, Jan 04 2013 *)

Extensions

Extended by R. J. Mathar, Dec 08 2008

A193070 Odd numbers N for which sigma(N^2) is prime.

Original entry on oeis.org

3, 5, 17, 27, 41, 49, 59, 71, 89, 101, 125, 131, 167, 169, 173, 289, 293, 383, 529, 677, 701, 729, 743, 761, 773, 827, 839, 841, 857, 911, 1091, 1097, 1163, 1181, 1193, 1217, 1373, 1427, 1487, 1559, 1583, 1709, 1811, 1847, 1849, 1931, 1973, 2129, 2197, 2273, 2309
Offset: 1

Views

Author

M. F. Hasler, Jul 15 2011

Keywords

Comments

The function sigma(n) (=A000203(n)) takes odd values when n is a square or twice a square. Thus, odd numbers n for which sigma(n) is prime (i.e. which are in A023194) must be odd squares. This sequence consists exactly of the square roots of these terms.

Crossrefs

Programs

  • Mathematica
    Select[Range[1,2401,2],PrimeQ[DivisorSigma[1,#^2]]&] (* Harvey P. Dale, Mar 07 2015 *)
  • PARI
    forstep(N=1, 1e7, 2, isprime(sigma(N^2)) && print1(N", "))

Formula

a(n) = A278911(n)^(1/2). - Robert Israel, Jan 22 2019

A229264 Primes in A065387 in the order of their appearance.

Original entry on oeis.org

2, 19, 19, 79, 103, 113, 257, 523, 509, 1151, 1279, 1193, 1579, 2273, 3061, 2389, 2693, 2843, 5003, 4831, 5119, 7411, 5693, 5623, 8623, 6323, 10139, 8933, 18401, 14957, 20411, 20479, 21191, 20123, 29683, 28211, 36833, 55021, 57203, 68743, 48761, 66533, 62423
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Examples

			Third term of A038344 is 9 and sigma(9) + phi(9) = 13 + 6 = 19 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a, n; for n from 1 to q do a:=sigma(n)+phi(n);
    if isprime(a) then print(a); fi; od; end: P(10^6);
  • Mathematica
    Select[Table[DivisorSigma[1,n]+EulerPhi[n],{n,30000}],PrimeQ] (* Harvey P. Dale, Apr 30 2018 *)
  • PARI
    lista(kmax) = {my(f, s); for(k = 1, kmax, f = factor(k); s= sigma(f) + eulerphi(f); if(isprime(s), print1(s, ", ")));} \\ Amiram Eldar, Nov 19 2024

Extensions

Name corrected by Amiram Eldar, Nov 19 2024

A229268 Primes of the form sigma(k) - tau(k), where sigma(k) = A000203(k) and tau(k) = A000005(k).

Original entry on oeis.org

2, 11, 353, 1013, 2333, 16369, 58579, 65519, 123733, 1982273, 7089683, 5778653, 12795053, 10500593, 22586027, 19980143, 24126653, 67108837, 72494713, 90781993, 106199593, 203275951, 164118923, 183105421, 320210549, 259997173, 794091653, 1279963973
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Examples

			Second term of A065061 is 8 and sigma(8) - tau(8) = 15 - 4 = 11 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,n; a:= sigma(n)-tau(n); for n from 1 to q do
    if isprime(a) then print(a); fi; od; end: P(10^6);
  • Mathematica
    Join[{2}, Select[(DivisorSigma[1, #] - DivisorSigma[0, #]) & /@ (2*Range[20000]^2), PrimeQ]] (* Amiram Eldar, Dec 06 2022 *)

Formula

a(n) = A000203(A065061(n)) - A000005(A065061(n)). - Michel Marcus, Sep 21 2013
a(n) = A065608(A065061(n)). - Amiram Eldar, Dec 06 2022

Extensions

More terms from Michel Marcus, Sep 21 2013
Previous Showing 11-20 of 89 results. Next