cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A136076 Father primes of order 7.

Original entry on oeis.org

59, 89, 179, 269, 359, 449, 479, 569, 659, 719, 809, 929, 1019, 1109, 1259, 1559, 1619, 1709, 1979, 2069, 2099, 2459, 2609, 2699, 2729, 2879, 2909, 2969, 2999, 3359, 3449, 3779, 4049, 4079, 4229, 4259, 4409, 4679, 5309, 5399, 5519, 5849, 6029, 6299, 6329
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest father primes of order n see A136026 (also definition). For father primes of order 1 see A094524. For father primes of order 2 see A136071. For father primes of order 3 see A136072. For father primes of order 4 see A136073. For father primes of order 5 see A136074. For father primes of order 6 see A136075.

Crossrefs

Programs

  • Mathematica
    n = 7; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136077 Father primes of order 8.

Original entry on oeis.org

67, 101, 509, 1019, 1223, 1427, 1733, 2243, 2549, 2957, 4079, 4283, 4793, 5303, 6833, 7547, 7649, 7853, 8363, 8669, 9587, 9689, 11117, 11933, 12239, 12647, 12953, 15809, 16217, 18869, 19583, 20297, 20807, 21419, 21929, 22133, 23357, 24683, 25703
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest father primes of order n see A136026 (also definition). For father primes of order 1 see A094524. For father primes of order 2 see A136071. For father primes of order 3 see A136072. For father primes of order 4 see A136073. For father primes of order 5 see A136074. For father primes of order 6 see A136075. For father primes of order 7 see A136075.

Crossrefs

Programs

  • Mathematica
    n = 8; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136078 Father primes of order 9.

Original entry on oeis.org

113, 151, 227, 379, 569, 607, 797, 911, 1291, 1367, 1709, 1861, 2089, 2621, 2659, 2887, 3001, 3191, 3457, 3761, 4027, 4597, 4787, 5167, 5281, 5851, 5927, 6421, 6991, 7219, 7561, 7789, 8017, 9689, 10601, 10867, 11171, 11399, 11437, 11551, 11779
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest father primes of order n see A136026 (also definition). For father primes of order 1 see A094524. For father primes of order 2 see A136071. For father primes of order 3 see A136072. For father primes of order 4 see A136073. For father primes of order 5 see A136074. For father primes of order 6 see A136075. For father primes of order 7 see A136076. For father primes of order 8 see A136077.

Crossrefs

Programs

  • Mathematica
    n = 9; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
    Select[Prime[Range[1500]],PrimeQ[(#-18)/19]&] (* Harvey P. Dale, Mar 26 2023 *)

A136079 Father primes of order 10.

Original entry on oeis.org

83, 167, 251, 293, 419, 503, 797, 881, 1259, 1301, 1427, 1511, 1553, 1889, 2141, 2267, 2309, 2393, 2687, 2897, 2939, 3191, 3527, 3779, 3821, 4073, 4157, 4451, 4703, 4787, 5039, 5081, 5417, 5669, 5711, 6173, 6551, 6971, 7307, 7349, 7433, 7559, 7727, 7853
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest father primes of order n, see A136026 (also definition). For father primes of orders 1,2,...,9, see A094524, A136071, A136072, A136073, A136074, A136075, A136076, A136077, A136078, respectively.
From Bob Selcoe, Apr 25 2014: (Start)
In general, a father prime, p', of order k is of the form p'=2k+(2k+1)*p for some prime, p. In this sequence, k=10, and so each prime is of the form p'=20+21p where p ranges over {3,7,11,13,19,23,...}. Thus a father prime p' has order k when (p'-2k)/(2k+1) is prime.
Father primes (p') of order k will be of the form: p'(mod (4k+2))=4k+1, or p'=(4k+2)*j-1, j>=2. For this sequence: k=10, 4k+2=42; j={2,4,6,7,10,12,...}. So for example, j=7 generates a father prime because 42*7-1 = 293 AND (293-(2*10))/(2*10+1) = 13, since both 13 and 293 are prime. Note that not all j such that (4k+2)*j-1 is prime will produce a father prime. In this example, when j=11, 42*11-1=461 (prime); but (461-(2*10))/(2*10+1) = 21 (not prime). (End)

Crossrefs

Programs

  • Mathematica
    n = 10; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136080 Father primes of order 11.

Original entry on oeis.org

137, 1103, 1931, 2069, 2621, 3449, 3863, 4001, 4139, 5381, 5519, 6761, 8831, 8969, 10211, 13109, 13523, 13799, 15731, 18353, 19319, 21803, 23321, 23459, 25253, 25391, 28151, 28289, 28979, 29531, 29669, 31601, 32429, 32843, 33119, 34361
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest father primes of order n see A136026 (also definition). For father primes of order 1 see A094524. For father primes of order 2 see A136071. For father primes of order 3 see A136072. For father primes of order 4 see A136073. For father primes of order 5 see A136074. For father primes of order 6 see A136075. For father primes of order 7 see A136076. For father primes of order 8 see A136077. For father primes of order 9 see A136078. For father primes of order 10 see A136079.

Crossrefs

Programs

  • Mathematica
    n = 11; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A115058 Primes p such that 3*p+2 is not prime.

Original entry on oeis.org

2, 11, 31, 41, 47, 53, 61, 67, 71, 73, 101, 107, 109, 113, 131, 137, 151, 157, 179, 181, 191, 193, 211, 223, 229, 241, 251, 263, 271, 277, 281, 283, 307, 311, 331, 347, 359, 373, 379, 389, 401, 421, 431, 443, 449, 461, 463, 467, 487, 491, 509, 521, 541, 547
Offset: 1

Views

Author

Cino Hilliard, Feb 28 2006

Keywords

Comments

Complement of A023208 in the prime numbers A000040.
Primes p that are also the largest prime factor of p*(p^2-1)*(3*p+2)/24.

Examples

			p=11, p*(p^2-1)*(3*p+2)/24 = 1925 = 5*5*7*11.
		

References

  • Number Theory, George E. Andrews 1971, Dover Publications New York, p 4.

Programs

Extensions

Edited by Max Alekseyev, Feb 06 2010

A229966 Numbers n such that A229964(n) = 3.

Original entry on oeis.org

12, 14, 22, 27, 33, 57, 85, 161, 203, 533, 689, 901, 1121, 1633, 2581, 4181, 5513, 5633, 7439, 10561, 18023, 18881, 20833, 21389, 23941, 25043, 28421, 32033, 37733, 48641, 58241, 64643, 66901, 77423, 80033, 84001, 90133, 106439, 116821, 119201, 149189, 155041
Offset: 1

Views

Author

Eric M. Schmidt, Oct 04 2013

Keywords

Comments

Equals {12, 14, 22, 27, 57} UNION {pq | p, q prime, q = 3p+2 or (p >= 5 and q = 4p+1)}.

Crossrefs

Programs

  • Sage
    [p * (3*p+2) for p in prime_range(10000) if (3*p+2).is_prime()] + [p * (4*p+1) for p in prime_range(5, 10000) if (4*p+1).is_prime()] + [12, 14, 22, 27, 57]

A023246 Primes that remain prime through 2 iterations of the function f(x) = 3*x + 2.

Original entry on oeis.org

5, 7, 19, 29, 79, 89, 97, 127, 139, 167, 317, 337, 397, 419, 607, 659, 709, 877, 929, 1069, 1129, 1409, 1699, 1777, 2029, 2099, 2267, 2339, 2557, 2617, 2707, 2837, 2917, 2939, 3019, 3067, 3389, 3407, 3529, 3617, 3659, 3719, 4229, 4549, 4919, 5209, 5227, 5417
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 3*p+2 and 9*p+8 are also primes. - Vincenzo Librandi, Aug 04 2010
All terms after the first == 7 or 9 (mod 10). - Robert Israel, Sep 12 2016

Crossrefs

Subsequence of A023208.

Programs

  • Magma
    [n: n in [0..100000] | IsPrime(n) and IsPrime(3*n+2) and IsPrime(9*n+8)] // Vincenzo Librandi, Aug 04 2010
  • Maple
    select(t -> isprime(t) and isprime(3*t+2) and isprime(9*t+8), [5, seq(seq(10*i+j,j=[7,9]),i=0..10^4)]); # Robert Israel, Sep 12 2016
  • Mathematica
    Select[Prime[Range[750]],And@@PrimeQ[Rest[NestList[3#+2&,#,2]]]&] (* Harvey P. Dale, May 05 2014 *)

A106067 Primes p such that 3*p + 2 and 2*p + 3 are primes.

Original entry on oeis.org

5, 7, 13, 17, 19, 29, 43, 89, 97, 127, 139, 167, 173, 197, 199, 227, 269, 337, 349, 353, 383, 397, 409, 439, 503, 523, 607, 643, 659, 797, 859, 887, 929, 1013, 1039, 1063, 1069, 1109, 1153, 1193, 1259, 1277, 1303, 1307, 1427, 1429, 1483, 1559, 1567, 1583
Offset: 1

Views

Author

Zak Seidov, May 07 2005

Keywords

Crossrefs

Intersection of A023204 and A023208.

Programs

  • Magma
    [p: p in PrimesUpTo(10000)| IsPrime(3*p+2) and IsPrime(2*p+3)]; // Vincenzo Librandi, Nov 13 2010
    
  • Mathematica
    Select[Prime[Range[20000]], PrimeQ[2#+3]&&PrimeQ[3#+2]&]
  • PARI
    is(p) = isprime(p) && isprime(3*p+2) && isprime(2*p+3); \\ Amiram Eldar, Nov 08 2024

A265763 Numerators of primes-only best approximates (POBAs) to 3; see Comments.

Original entry on oeis.org

7, 5, 17, 13, 23, 19, 31, 41, 37, 53, 59, 71, 67, 89, 113, 109, 131, 127, 139, 157, 179, 181, 199, 211, 239, 251, 269, 293, 311, 307, 337, 383, 379, 409, 419, 449, 491, 487, 503, 499, 521, 541, 571, 577, 593, 599, 631, 683, 701, 719, 751, 773, 769, 787, 809
Offset: 1

Views

Author

Clark Kimberling, Dec 18 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.

Examples

			The POBAs for 3 start with 7/2, 5/2, 17/5, 13/5, 23/7, 19/7, 31/11, 41/13, 37/13, 53/17. For example, if p and q are primes and q > 13, then 41/13 is closer to 3 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 3; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265763/A265764 *)
    Numerator[tL]   (* A091180 *)
    Denominator[tL] (* A088878 *)
    Numerator[tU]   (* A094525 *)
    Denominator[tU] (* A023208 *)
    Numerator[y]    (* A265763 *)
    Denominator[y]  (* A265764 *)
Previous Showing 21-30 of 41 results. Next