cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A240847 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) for n>3, a(0)=a(1)=a(3)=0, a(2)=1.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, -2, -5, -12, -25, -50, -96, -180, -331, -600, -1075, -1908, -3360, -5878, -10225, -17700, -30509, -52390, -89664, -153000, -260375, -442032, -748775, -1265832, -2136000, -3598250, -6052061, -10164540
Offset: 0

Views

Author

Paul Curtz, Apr 13 2014

Keywords

Comments

F1(m, n) is the difference table of a(n):
0, 0, 1, 0, 1, 0, 0, -2, ...
0, 1, -1, 1, -1, 0, -2, -3, ...
1, -2, 2, -2, 1, -2, -1, -4, ...
-3, 4, -4, 3, -3, 1, -3, -2, ...
7, -8, 7, -6, 4, -4, 1, -4, ...
-15, 15, -13, 10, -8, 5, -5, 1, ...
30, -28, 23, -18, 13, -10, 6, -6, ...
The recurrence holds for every row and every signed column.
Main diagonal: F1(n, n) = A001477(n).
First upper diagonal: F1(n, n+1) = -A001477(n).
F1(m, n) = F1(m, n-1) + F1(m+1, n-1).
Inverse binomial transform: 0, 0, 1, -3, 7, -15, 30, ... = 0, 0, followed by (-1)^n*A023610(n). Without signs: F2(0, n) = 0, 0, 1, 3, 7, 15, 30, ... = b(n) has the same recurrence.
F1(0, n) + F2(0, n) = 0, followed by A099920(n).
a(n) and b(n) are reciprocal by their inverse binomial transform.
0, followed by A001629(n) is an autosequence.
F1(m, 1) = (-1)^n*A029907(n).
F1(1, n) = 0, 1, -1, 1, -1, followed by -A226432(n+3).
F1(m, 2) = (-1)^n*A208354(n).

Crossrefs

Cf. A000032, A000045, A001629 (main sequence for the recurrence), A067331.

Programs

  • GAP
    List([0..40], n-> (6*Fibonacci(n-3) - (n-3)*Lucas(1,-1,n-3)[2])/5 ); # G. C. Greubel, Feb 06 2020
  • Magma
    [(6*Fibonacci(n-3) - (n-3)*Lucas(n-3))/5: n in [0..40]]; // G. C. Greubel, Feb 06 2020
    
  • Maple
    with(combinat): seq( ((n+3)*fibonacci(n-3) - 2*(n-3)*fibonacci(n-2))/5, n=0..40); # G. C. Greubel, Feb 06 2020
  • Mathematica
    a[n_]:= a[n]= 2*a[n-1] +a[n-2] -2*a[n-3] -a[n-4]; a[0]= a[1]= a[3]= 0; a[2]= 1; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Apr 17 2014 *)
    CoefficientList[Series[x^2*(1-2*x)/(1-x-x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, May 09 2014 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,2d+c-2b-a}; NestList[nxt,{0,0,1,0},40][[All,1]] (* Harvey P. Dale, Sep 17 2022 *)
  • PARI
    Vec(x^2*(1-2*x)/(1-x-x^2)^2 + O(x^100)) \\ Colin Barker, Apr 13 2014
    
  • PARI
    vector(41, n, my(m=n-1); ((m+3)*fibonacci(m-3) - 2*(m-3)*fibonacci(m-2) )/5 ) \\ G. C. Greubel, Feb 06 2020
    
  • Sage
    [((n+3)*fibonacci(n-3) - 2*(n-3)*fibonacci(n-2))/5 for n in (0..40)] # G. C. Greubel, Feb 06 2020
    

Formula

a(n) = 0, 0, 1, 0, 1, 0, 0, followed by -A067331.
G.f.: x^2*(1-2*x)/(1-x-x^2)^2. - Colin Barker, Apr 13 2014
a(n) = ( (10*n + (3-5*n)*t)*(1+t)^n + (10*n-(3-5*n)*t)*(1-t)^n )/(25*2^n), where t=sqrt(5). - Bruno Berselli, Apr 17 2014
a(n) = (6*Fibonacci(n-3) - (n-3)*Lucas(n-3))/5 = ((n+3)*Fibonacci(n-3) - 2*(n-3)*Fibonacci(n-2))/5. - G. C. Greubel, Feb 06 2020

A101350 Triangle read by rows: T(n,k) = number of k-matchings in the graph obtained by a zig-zag triangulation of a convex n-gon, T(0,0)=T(1,0)=T(2,0)=T(2,1)=1 (n > 2, 0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 5, 2, 1, 7, 7, 1, 9, 16, 3, 1, 11, 29, 15, 1, 13, 46, 43, 5, 1, 15, 67, 95, 30, 1, 17, 92, 179, 104, 8, 1, 19, 121, 303, 271, 58, 1, 21, 154, 475, 591, 235, 13, 1, 23, 191, 703, 1140, 705, 109, 1, 25, 232, 995, 2010, 1746, 506, 21, 1, 27, 277, 1359, 3309, 3780
Offset: 0

Views

Author

Emeric Deutsch, Dec 25 2004

Keywords

Examples

			T(5,2)=7 because in the triangulation of the convex pentagon ABCDEA with diagonals AD and AC we have seven 2-matchings: {AB,CD},{AB,DE},{BC,AD},{BC,DE},{BC,EA},{CD,EA} and {DE,AC}.
Triangle begins:
  1;
  1;
  1,  1;
  1,  3;
  1,  5,  2;
  1,  7,  7;
  1,  9, 16,  3;
  1, 11, 29, 15;
  1, 13, 46, 43, 5;
  ...
		

Crossrefs

Row sums yield A000078 (the tetranacci numbers). T(2n+1, n) = A023610(n) (n > 0). T(2n, n) = A000045(n+1) (the Fibonacci numbers).

Programs

  • Maple
    G:=1/(1-z-t*z^2-t*z^3-t^2*z^4):Gserz:=simplify(series(G,z=0,18)):P[0]:=1: for n from 1 to 16 do P[n]:=sort(coeff(Gserz,z^n)) od:for n from 0 to 16 do seq(coeff(t*P[n],t^k),k=1..1+floor(n/2)) od;# yields the sequence in triangular form
  • PARI
    s(n) = 1/(1-x-y*x^2-y*x^3-y^2*x^4) + O(x^n);
    my(gf=Pol(s(20))); for(n=0, poldegree(gf), my(p=polcoeff(gf,n)); for(k=0, poldegree(p), print1(polcoeff(p,k), ", ")); print) \\ Andrew Howroyd, Nov 04 2017

Formula

G.f.: 1/(1 - z - tz^2 - tz^3 - t^2z^4).

A209599 Triangle T(n,k), read by rows, given by (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 5, 3, 0, 0, 8, 7, 1, 0, 0, 13, 15, 4, 0, 0, 0, 21, 30, 12, 1, 0, 0, 0, 34, 58, 31, 5, 0, 0, 0, 0, 55, 109, 73, 18, 1, 0, 0, 0, 0, 89, 201, 162, 54, 6, 0, 0, 0, 0, 0, 144, 365, 344, 145, 25, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 10 2012

Keywords

Comments

A skew version of A122075.

Examples

			Triangle begins :
  1
  2, 0
  3, 1, 0
  5, 3, 0, 0
  8, 7, 1, 0, 0
  13, 15, 4, 0, 0, 0
  21, 30, 12, 1, 0, 0, 0
  34, 58, 31, 5, 0, 0, 0, 0
  55, 109, 73, 18, 1, 0, 0, 0, 0
  89, 201, 162, 54, 6, 0, 0, 0, 0, 0
  144, 365, 344, 145, 25, 1, 0, 0, 0, 0, 0
  ...
		

Crossrefs

Programs

  • Mathematica
    T[0, 0] := 1; T[1, 0] := 2; T[1, 1] := 0; T[n_, k_] := T[n, k] = If[n<0, 0, If[k > n, 0, T[n - 1, k] + T[n - 2, k] + T[n - 2, k - 1]]]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Dec 19 2017 *)

Formula

G.f.: (1+x)/(1-x-(1+y)*x^2).
T(n,k) = T(n-1,k) + T(n-2,k) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0, T(n,k) = 0 if k<0 or if k>n.
Sum_{k, 0<=k<=n} T(n,k)*x^k = A040000(n), A000045(n+2), A000079(n), A006138(n), A026597(n), A133407(n), A133467(n), A133469(n), A133479(n), A133558(n), A133577(n), A063092(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.

A236076 A skewed version of triangular array A122075.

Original entry on oeis.org

1, 0, 2, 0, 1, 3, 0, 0, 3, 5, 0, 0, 1, 7, 8, 0, 0, 0, 4, 15, 13, 0, 0, 0, 1, 12, 30, 21, 0, 0, 0, 0, 5, 31, 58, 34, 0, 0, 0, 0, 1, 18, 73, 109, 55, 0, 0, 0, 0, 0, 6, 54, 162, 201, 89, 0, 0, 0, 0, 0, 1, 25, 145, 344, 365, 144, 0, 0, 0, 0, 0, 0, 7, 85, 361
Offset: 0

Views

Author

Philippe Deléham, Jan 19 2014

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Subtriangle of the triangle A122950.

Examples

			Triangle begins:
  1;
  0,  2;
  0,  1,  3;
  0,  0,  3,  5;
  0,  0,  1,  7,  8;
  0,  0,  0,  4, 15, 13;
  0,  0,  0,  1, 12, 30, 21;
  0,  0,  0,  0,  5, 31, 58, 34;
		

Crossrefs

Cf. variant: A055830, A122075, A122950, A208337.
Cf. A167704 (diagonal sums), A000079 (row sums).
Cf. A111006.

Programs

  • Haskell
    a236076 n k = a236076_tabl !! n !! k
    a236076_row n = a236076_tabl !! n
    a236076_tabl = [1] : [0, 2] : f [1] [0, 2] where
       f us vs = ws : f vs ws where
         ws = [0] ++ zipWith (+) (zipWith (+) ([0] ++ us) (us ++ [0])) vs
    -- Reinhard Zumkeller, Jan 19 2014
    
  • Mathematica
    T[n_, k_]:= If[k<0 || k>n, 0, If[n==0 && k==0, 1, If[k==0, 0, If[n==1 && k==1, 2, T[n-1, k-1] + T[n-2, k-1] + T[n-2, k-2]]]]]; Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, May 21 2019 *)
  • PARI
    {T(n,k) = if(k<0 || k>n, 0, if(n==0 && k==0, 1, if(k==0, 0, if(n==1 && k==1, 2, T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2) ))))}; \\ G. C. Greubel, May 21 2019
    
  • Sage
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (n==0 and k==0): return 1
        elif (k==0): return 0
        elif (n==1 and k==1): return 2
        else: return T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2)
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 21 2019

Formula

G.f.: (1+x*y)/(1 - x*y - x^2*y - x^2*y^2).
T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2), T(0,0)=1, T(1,0) = 0, T(1,1) = 2, T(n,k) = 0 if k < 0 or if k > n.
Sum_{k=0..n} T(n,k) = 2^n = A000079(n).
Sum_{n>=k} T(n,k) = A078057(k) = A001333(k+1).
T(n,n) = Fibonacci(n+2) = A000045(n+2).
T(n+1,n) = A023610(n-1), n >= 1.
T(n+2,n) = A129707(n).

A323212 The Fibonacci-Catalan Hybrid. Expansion of 1 + x*(2*(x + 1))/(sqrt(1 - 4*y) - 2*x*(x + 1) + 1). Square array read by descending antidiagonals, A(n,k) for n,k >= 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 3, 3, 0, 5, 7, 7, 5, 0, 14, 19, 19, 15, 8, 0, 42, 56, 56, 46, 30, 13, 0, 132, 174, 174, 146, 103, 58, 21, 0, 429, 561, 561, 477, 351, 220, 109, 34, 0, 1430, 1859, 1859, 1595, 1205, 801, 453, 201, 55, 0, 4862, 6292, 6292, 5434, 4180, 2884, 1756, 908, 365, 89
Offset: 0

Views

Author

Peter Luschny, Feb 14 2019

Keywords

Examples

			      1,   0,    0,    0,     0,      0,      0,       0,       0, ...
      1,   1,    2,    5,    14,     42,    132,     429,    1430, ... [A000108]
      2,   3,    7,   19,    56,    174,    561,    1859,    6292, ... [A005807]
      3,   7,   19,   56,   174,    561,   1859,    6292,   21658, ... [A005807]
      5,  15,   46,  146,   477,   1595,   5434,   18798,   65858, ...
      8,  30,  103,  351,  1205,   4180,  14651,   51844,  185028, ...
     13,  58,  220,  801,  2884,  10372,  37401,  135420,  492558, ...
     21, 109,  453, 1756,  6621,  24674,  91532,  339184, 1257762, ...
     34, 201,  908, 3734, 14719,  56796, 216698,  821848, 3107583, ...
     55, 365, 1781, 7746, 31872, 127245, 499164, 1937439, 7470819, ...
A000045,A023610,...
Seen as a triangle a refinement of A000958:
[0]                                1
[1]                              0, 1
[2]                            0, 1, 2
[3]                           0, 2, 3, 3
[4]                         0, 5, 7, 7, 5
[5]                      0, 14, 19, 19, 15, 8
[6]                   0, 42, 56, 56, 46, 30, 13
[7]               0, 132, 174, 174, 146, 103, 58, 21
[8]            0, 429, 561, 561, 477, 351, 220, 109, 34
[9]       0, 1430, 1859, 1859, 1595, 1205, 801, 453, 201, 55
		

Crossrefs

Antidiagonal sums (or row sums of the triangle) are A000958.

Programs

  • Maple
    gf := 1 + x*(2*(x + 1))/(sqrt(1 - 4*y) - 2*x*(x + 1) + 1):
    serx := series(gf, x, 20): sery := n -> series(coeff(serx, x, n), y, 20):
    row := n -> seq(coeff(sery(n), y, j), j=0..9):
    seq(lprint(row(n)), n=0..9);
  • Mathematica
    m = 11; T = PadRight[CoefficientList[#+O[y]^m, y], m]& /@ CoefficientList[1 + 2x(x+1)/(Sqrt[1-4y] - 2x(x+1) + 1) + O[x]^m, x]; Table[T[[n-k+1, k]], {n, 1, m}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Mar 20 2019 *)

A113684 Expansion of x(1-x^2-x^3)/((1-x)(1-x-x^2))^2.

Original entry on oeis.org

0, 1, 4, 11, 25, 52, 102, 193, 356, 645, 1153, 2040, 3580, 6241, 10820, 18671, 32089, 54956, 93826, 159745, 271300, 459721, 777409, 1312176, 2211000, 3719617, 6248452, 10482323, 17562841, 29391460, 49132638, 82048705, 136884260
Offset: 0

Views

Author

Paul Barry, Nov 05 2005

Keywords

Crossrefs

Formula

a(n)=4a(n-1)-4a(n-2)-2a(n-3)+4a(n-4)-a(n-6); a(n)=sum{k=0..n, (n-k)*C(n-k, k+1)}; a(n)=n*(F(n+2)-1)-(1+((n-5)*F(n-1)+(3n-8)*F(n))/5).

A129709 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 011 subwords (0<=k<=floor(n/3)). A Fibonacci binary word is a binary word having no 00 subword.

Original entry on oeis.org

1, 2, 3, 4, 1, 5, 3, 6, 7, 7, 13, 1, 8, 22, 4, 9, 34, 12, 10, 50, 28, 1, 11, 70, 58, 5, 12, 95, 108, 18, 13, 125, 188, 50, 1, 14, 161, 308, 121, 6, 15, 203, 483, 261, 25, 16, 252, 728, 520, 80, 1, 17, 308, 1064, 968, 220, 7, 18, 372, 1512, 1710, 536, 33, 19, 444, 2100
Offset: 0

Views

Author

Emeric Deutsch, May 12 2007

Keywords

Comments

Also number of Fibonacci binary words of length n and having k 110 subwords. Row n has 1+floor(n/3) terms. Row sums are the Fibonacci numbers (A000045). T(n,0)=n+1. Sum(k*T(n,k), k>=0)=A023610(n-3).

Examples

			T(7,2)=4 because we have 1011011,0111011,0110110 and 0110111.
Triangle starts:
1;
2;
3;
4,1;
5,3;
6,7;
7,13,1;
8,22,4;
9,34,12;
10,50,28,1;
		

Crossrefs

Programs

  • Maple
    G:=(1+z)/(1-z-z^2+z^3-t*z^3): Gser:=simplify(series(G,z=0,23)): for n from 0 to 20 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 20 do seq(coeff(P[n],t,j),j=0..floor(n/3)) od; # yields sequence in triangular form

Formula

G.f.=G(t,z)=(1+z)/(1-z-z^2+z^3-tz^3).
Previous Showing 21-27 of 27 results.