cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 85 results. Next

A277699 Main diagonal of A277320: a(n) = A048720(n, A065621(n)).

Original entry on oeis.org

1, 4, 9, 16, 57, 36, 49, 64, 209, 228, 217, 144, 233, 196, 225, 256, 801, 836, 809, 912, 793, 868, 785, 576, 1009, 932, 1017, 784, 969, 900, 961, 1024, 3137, 3204, 3145, 3344, 3193, 3236, 3185, 3648, 3217, 3172, 3225, 3472, 3241, 3140, 3233, 2304, 3937, 4036, 3945, 3728, 3929, 4068, 3921
Offset: 1

Views

Author

Antti Karttunen, Nov 01 2016

Keywords

Crossrefs

Cf. A277704, A277706 (the positions of squares/nonsquares in this sequence).
Cf. A277805 (nonsquares in the order of appearance).

Programs

Formula

a(n) = A277320(n,n) = A048720(n, A065621(n)).
For n > 1, a(A023758(n)) = A000290(A023758(n)).

A277330 a(0)=1, a(1)=2, a(2n) = A003961(a(n)), a(2n+1) = lcm(a(n),a(n+1))/gcd(a(n),a(n+1)).

Original entry on oeis.org

1, 2, 3, 6, 5, 2, 15, 30, 7, 10, 3, 30, 35, 2, 105, 210, 11, 70, 21, 30, 5, 10, 105, 42, 77, 70, 3, 210, 385, 2, 1155, 2310, 13, 770, 231, 30, 55, 70, 105, 6, 7, 2, 21, 42, 385, 10, 165, 66, 143, 110, 231, 210, 5, 70, 1155, 66, 1001, 770, 3, 2310, 5005, 2, 15015, 30030, 17, 10010, 3003, 30, 715, 770, 105, 66, 91, 154, 231, 6, 385, 70, 15, 42, 11, 14, 3, 42, 55, 2
Offset: 0

Views

Author

Antti Karttunen, Oct 27 2016

Keywords

Comments

Each term is a squarefree number, A005117.

Crossrefs

Cf. A023758 (positions where coincides with A260443).
Cf. A277701, A277712, A277713 for the positions of 2's, 3's and 6's in this sequence, which are also the first three rows of array A277710.
Cf. also A255483.

Formula

a(0) = 1, a(1) = 2, a(2n) = A003961(a(n)), a(2n+1) = lcm(a(n),a(n+1))/gcd(a(n),a(n+1)).
Other identities. For all n >= 0:
a(n) = A007913(A260443(n)).
a(n) = A019565(A264977(n)), A048675(a(n)) = A264977(n).
A055396(a(n)) = A277707(A260443(n)) = A001511(n).

A043569 Numbers whose base-2 representation has exactly 2 runs.

Original entry on oeis.org

2, 4, 6, 8, 12, 14, 16, 24, 28, 30, 32, 48, 56, 60, 62, 64, 96, 112, 120, 124, 126, 128, 192, 224, 240, 248, 252, 254, 256, 384, 448, 480, 496, 504, 508, 510, 512, 768, 896, 960, 992, 1008, 1016, 1020, 1022, 1024, 1536, 1792, 1920, 1984, 2016, 2032, 2040, 2044
Offset: 1

Views

Author

Keywords

Comments

Numbers whose binary representation contains the bit string "10" but not "01". Subsequence of A062289; set difference A062289 minus A101082. - Rick L. Shepherd, Nov 29 2004
Mersenne numbers (A000225) times powers of 2 (A000079). Therefore this sequence contains the even perfect numbers (A000396). - Alonso del Arte, Apr 21 2006

Crossrefs

Programs

  • Maple
    a:=proc(n) local nn,nd: nn:=convert(n,base,2): nd:={seq(nn[j]-nn[j-1],j=2..nops(nn))}: if n=2 then 2 elif nd={0,1} then n else fi end: seq(a(n),n=1..2100); # Emeric Deutsch, Apr 21 2006
  • Mathematica
    Take[Sort[Flatten[Table[(2^x - 1)*(2^y), {x, 32}, {y, 32}]]], 54] (* Alonso del Arte, Apr 21 2006 *)
    Select[Range[2500],Length[Split[IntegerDigits[#,2]]]==2&] (* or *) Select[Range[2500],SequenceCount[IntegerDigits[#,2],{1,0}]>0 && SequenceCount[ IntegerDigits[#,2],{0,1}]==0&] (* Harvey P. Dale, Oct 04 2024 *)
  • Python
    def ok(n): b = bin(n)[2:]; return "10" in b and "01" not in b
    print([m for m in range(2045) if ok(m)]) # Michael S. Branicky, Feb 04 2021
    
  • Python
    def a_next(a_n): t = a_n >> 1; return (a_n | t) + (t & 1)
    a_n = 2; a = []
    for i in range(54): a.append(a_n); a_n = a_next(a_n) # Falk Hüffner, Feb 19 2022

Formula

This sequence is twice A023758. - Franklin T. Adams-Watters, Apr 21 2006
Sum_{n>=1} 1/a(n) = A065442. - Amiram Eldar, Feb 20 2022
A007814(a(n)) = A004736(n). - Lorenzo Sauras Altuzarra, Feb 01 2023

Extensions

More terms from Rick L. Shepherd, Nov 29 2004

A049502 Major index of n, 2nd definition.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 2, 0, 1, 0, 0, 0, 1, 2, 2, 3, 4, 3, 3, 0, 1, 2, 2, 0, 1, 0, 0, 0, 1, 2, 2, 3, 4, 3, 3, 4, 5, 6, 6, 4, 5, 4, 4, 0, 1, 2, 2, 3, 4, 3, 3, 0, 1, 2, 2, 0, 1, 0, 0, 0, 1, 2, 2, 3, 4, 3, 3, 4, 5, 6, 6, 4, 5, 4, 4, 5, 6, 7, 7, 8, 9, 8, 8, 5, 6, 7, 7, 5, 6, 5, 5, 0, 1, 2, 2, 3, 4, 3, 3, 4
Offset: 0

Views

Author

Keywords

Comments

a(A023758(n)) = 0; a(A101082(n)) > 0. - Reinhard Zumkeller, Jun 17 2015

Examples

			83 = 1010011 has 1's followed by 0's in positions 2 and 5 (reading from the right), so a(83)=7.
		

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; cf. p. 89.

Crossrefs

Programs

  • Haskell
    a049502 = f 0 1 where
       f m i x = if x <= 4
                    then m else f (if mod x 4 == 1
                                      then m + i else m) (i + 1) $ div x 2
    -- Reinhard Zumkeller, Jun 17 2015
    
  • Maple
    A049502 := proc(n)
        local a,ndgs,p ;
        a := 0 ;
        ndgs := convert(n,base,2) ;
        for p from 1 to nops(ndgs)-1 do
            if op(p,ndgs)- op(p+1,ndgs) = 1 then
                a := a+p ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Oct 17 2012
  • Mathematica
    Table[Total[Flatten[Position[Partition[Reverse[IntegerDigits[n,2]],2,1],?(#=={1,0}&)]]],{n,0,110}] (* _Harvey P. Dale, Oct 05 2013 *)
    Table[Total[SequencePosition[Reverse[IntegerDigits[n,2]],{1,0}][[All,1]]],{n,0,120}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 26 2020 *)
  • PARI
    a(n)=if(n<5, return(0)); sum(i=0,exponent(n)-1, (bittest(n,i) && !bittest(n,i+1))*(i+1)) \\ Charles R Greathouse IV, Jan 30 2023
  • Python
    def m(n):
        x=bin(int(n))[2:][::-1]
        s=0
        for i in range(1,len(x)):
            if x[i-1]=="1" and x[i]=="0":
                s+=i
        return s
    for i in range(101):
        print(str(i)+" "+str(m(i))) # Indranil Ghosh, Dec 22 2016
    

Formula

Write n in binary; add positions where there are 1's followed by 0's, counting from right.

Extensions

More terms from Erich Friedman, Feb 19 2000

A385886 Irregular triangle read by rows listing the lengths of maximal anti-runs (sequences of distinct consecutive elements increasing by more than 1) of binary indices, duplicate rows removed.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 1, 1, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 14 2025

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
This is the triangle A384877, except all duplicates after the first instance of each composition are removed. It lists all compositions in order of their first appearance as a row of A384877.

Examples

			The binary indices of 27 are {1,2,4,5}, with maximal anti-runs ((1),(2,4),(5)), with lengths (1,2,1). After removing duplicates, this is our row 10.
The binary indices of 53 are {1,3,5,6}, with maximal anti-runs ((1,3,5),(6)), with lengths (3,1). After removing duplicates, this is our row 16.
Triangle begins:
   0: .
   1: 1
   2: 1 1
   3: 2
   4: 1 1 1
   5: 1 2
   6: 2 1
   7: 1 1 1 1
   8: 3
   9: 1 1 2
  10: 1 2 1
  11: 2 1 1
  12: 1 1 1 1 1
  13: 1 3
  14: 2 2
  15: 1 1 1 2
  16: 3 1
  17: 1 1 2 1
  18: 1 2 1 1
  19: 2 1 1 1
  20: 1 1 1 1 1 1
		

Crossrefs

In the following references, "before" is short for "before removing duplicate rows".
Positions of singleton rows appear to be A001906 = A055588 - 1.
Positions of rows of the form (1,1,...) appear to be A001911-2, before A023758.
Row sums appear to be A200648, before A000120.
Row lengths appear to be A200649, before A384890.
Standard composition numbers of each row appear to be A348366.
Before we had A384877, ranks A385816, firsts A052499.
For runs instead of anti-runs we have A385817, see A245563, A245562, A246029.

Programs

  • Mathematica
    DeleteDuplicates[Table[Length/@Split[Join@@Position[Reverse[IntegerDigits[n,2]],1],#2!=#1+1&],{n,0,100}]]

A187769 Triangle read by rows: equivalence classes of natural numbers, where numbers are equivalent when having equal numbers of zeros and ones in binary representation, respectively.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11, 13, 14, 15, 16, 17, 18, 20, 24, 19, 21, 22, 25, 26, 28, 23, 27, 29, 30, 31, 32, 33, 34, 36, 40, 48, 35, 37, 38, 41, 42, 44, 49, 50, 52, 56, 39, 43, 45, 46, 51, 53, 54, 57, 58, 60, 47, 55, 59, 61, 62, 63, 64, 65, 66
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 05 2013

Keywords

Comments

Row lengths are given by Pascal's triangle (cf. A007318), seen as flattened sequence, or for n > 0: length of n-th row = A007318(A003056(n-1),A002262(n-1));
1 <= i < j <= length of n-th row: A023416(T(n,i)) = A023416(T(n,j)), A000120(T(n,i)) = A000120(T(n,j)) and A070939(T(n,i)) = A070939(T(n,j));
the table provides a permutation of the natural numbers when seen as flattened sequence.
This sequence can be seen as an irregular triangle S(i,k) where row 0 = {1}, row n = { m = 2^(n-1)..2^n - 1 } sorted according to omega(A019565(m)), where omega = A001221. Under this arrangement, the rows can be further subdivided into segments of m with the same omega(m), which align with the original definition's triangle T. - Michael De Vlieger, Jan 03 2025

Examples

			See link.
		

Crossrefs

Rows of A187786, duplicates removed;
Cf. A099627 (left edge), A023758 (right edge).

Programs

  • Haskell
    import List (elemIndices)
    a187769 n k = a187769_tabf !! n !! k
    a187769_row n = a187769_tabf !! n
    a187769_tabf = [0] : [elemIndices (b, len - b) $
       takeWhile ((<= len) . uncurry (+)) $ zip a000120_list a023416_list |
       len <- [1 ..], b <- [1 .. len]]
    a187769_list = concat a187769_tabf
  • Mathematica
    {{0}}~Join~Table[SortBy[Range[2^n, 2^(n + 1) - 1], DigitCount[#, 2, 1] &], {n, 0, 8}] // Flatten (* Michael De Vlieger, Jan 03 2025 *)

A057728 A triangular table of decreasing powers of two (with first column all ones).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 4, 2, 1, 1, 16, 8, 4, 2, 1, 1, 32, 16, 8, 4, 2, 1, 1, 64, 32, 16, 8, 4, 2, 1, 1, 128, 64, 32, 16, 8, 4, 2, 1, 1, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1
Offset: 1

Views

Author

Alford Arnold, Oct 29 2000

Keywords

Comments

First differences of sequence A023758.
A023758 is the sequence of partial sums of a(n) with row sums A000337.
2^A004736(n) is a sequence closely related to a(n).
T(n,k) is the number of length n binary words having an odd number of 0's with exactly k 1's following the last 0, n >= 1, 0 <= k <= n - 1. - Geoffrey Critzer, Jan 28 2014

Examples

			Triangle starts:
  1,
  1,    1,
  1,    2,    1,
  1,    4,    2,   1,
  1,    8,    4,   2,   1,
  1,   16,    8,   4,   2,   1,
  1,   32,   16,   8,   4,   2,  1,
  1,   64,   32,  16,   8,   4,  2,  1,
  1,  128,   64,  32,  16,   8,  4,  2,  1,
  1,  256,  128,  64,  32,  16,  8,  4,  2, 1,
  1,  512,  256, 128,  64,  32, 16,  8,  4, 2, 1,
  1, 1024,  512, 256, 128,  64, 32, 16,  8, 4, 2, 1,
  1, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1,
  ... - _Joerg Arndt_, May 04 2014
When viewed as a triangular array, row 8 of A023758 is 128 192 224 240 248 252 254 255 so row 8 here is 1 64 32 16 8 4 2 1
From _Mats Granvik_, Jan 19 2009: (Start)
Except for the first term the table can also be formatted as:
   1,
   1, 1,
   2, 1, 1,
   4, 2, 1, 1,
   8, 4, 2, 1, 1,
  16, 8, 4, 2, 1, 1,
  ...
(End)
		

Crossrefs

Cf. A155038 (essentially the same as this sequence). [Mats Granvik, Jan 19 2009]

Programs

  • Haskell
    a057728 n k = a057728_tabl !! (n-1) !! (k-1)
    a057728_row n = a057728_tabl !! (n-1)
    a057728_tabl = iterate
       (\row -> zipWith (+) (row ++ [0]) ([0] ++ tail row ++ [1])) [1]
    -- Reinhard Zumkeller, Aug 08 2013
    
  • Mathematica
    nn=10;Map[Select[#,#>0&]&,CoefficientList[Series[(x-x^2)/(1-2x)/(1-y x),{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Jan 28 2014 *)
    Module[{nn=12,ts},ts=2^Range[0,nn];Table[Join[{1},Reverse[Take[ts,n]]],{n,0,nn}]]//Flatten (* Harvey P. Dale, Jan 15 2022 *)
  • Maxima
    T(n, k) := if k = 0 then 1 else  2^(n - k - 1)$
    create_list(T(n, k), n, 0, 12, k, 0, n - 1); /* Franck Maminirina Ramaharo, Jan 09 2019 */

Formula

G.f.: (x - x^2)/((1 - 2*x)*(1 - y*x)). - Geoffrey Critzer, Jan 28 2014 [This produces the triangle shown by Mats Granvik in example section. - Franck Maminirina Ramaharo, Jan 09 2019]
From Franck Maminirina Ramaharo, Jan 09 2019: (Start)
G.f.: x*(1 - 2*x + y*x^2)/((1 - x)*(1 - 2*x)*(1 - x*y)).
E.g.f.: (exp(2*x)*y - 2*exp(x*y))/(4 - 2*y) + exp(x) - 1/2. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 30 2000

A209859 Rewrite the binary expansion of n from the most significant end, 1 -> 1, 0+1 (one or more zeros followed by one) -> 0, drop the trailing zeros of the original n.

Original entry on oeis.org

0, 1, 1, 3, 1, 2, 3, 7, 1, 2, 2, 5, 3, 6, 7, 15, 1, 2, 2, 5, 2, 4, 5, 11, 3, 6, 6, 13, 7, 14, 15, 31, 1, 2, 2, 5, 2, 4, 5, 11, 2, 4, 4, 9, 5, 10, 11, 23, 3, 6, 6, 13, 6, 12, 13, 27, 7, 14, 14, 29, 15, 30, 31, 63, 1, 2, 2, 5, 2, 4, 5, 11, 2, 4, 4, 9, 5, 10, 11, 23, 2, 4, 4, 9, 4, 8, 9, 19, 5, 10, 10, 21, 11, 22, 23, 47, 3, 6, 6, 13, 6, 12, 13, 27, 6, 12, 12, 25, 13
Offset: 0

Views

Author

Antti Karttunen, Mar 24 2012

Keywords

Comments

This is the number k such that the k-th composition in standard order is the reversed sequence of lengths of the maximal anti-runs of the binary indices of n. Here, the binary indices of n are row n of A048793, and the k-th composition in standard order is row k of A066099. For example, the binary indices of 100 are {3,6,7}, with maximal anti-runs ((3,6),(7)), with reversed lengths (1,2), which is the 6th composition in standard order, so a(100) = 6. - Gus Wiseman, Jul 27 2025

Examples

			102 in binary is 1100110, we rewrite it from the left so that first two 1's stay same ("11"), then "001" is rewritten to "0", the last 1 to "1", and we ignore the last 0, thus getting 1101, which is binary expansion of 13, thus a(102) = 13.
		

Crossrefs

This is an "inverse" of A071162, i.e. a(A071162(n)) = n for all n. Bisection: A209639. Used to construct permutation A209862.
Removing duplicates appears to give A358654.
Sorted positions of firsts appearances appear to be A247648+1.
A245563 lists run-lengths of binary indices (ranks A246029), reverse A245562.
A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[Reverse[Length/@Split[bpe[n],#2!=#1+1&]]],{n,0,100}] (* Gus Wiseman, Jul 25 2025 *)
  • Python
    import re
    def a(n): return int(re.sub("0+1", "0", bin(n)[2:].rstrip("0")), 2) if n else 0
    print([a(n) for n in range(109)])  # Michael S. Branicky, Jul 25 2025
  • Scheme
    (define (A209859 n) (let loop ((n n) (s 0) (i (A053644 n))) (cond ((zero? n) s) ((> i n) (if (> (/ i 2) n) (loop n s (/ i 2)) (loop (- n (/ i 2)) (* 2 s) (/ i 4)))) (else (loop (- n i) (+ (* 2 s) 1) (/ i 2))))))
    

Formula

a(n) = a(A000265(n)).

A385889 The number k such that the k-th composition in standard order is the sequence of lengths of maximal runs of binary indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 2, 4, 1, 3, 3, 5, 2, 6, 4, 8, 1, 3, 3, 5, 3, 7, 5, 9, 2, 6, 6, 10, 4, 12, 8, 16, 1, 3, 3, 5, 3, 7, 5, 9, 3, 7, 7, 11, 5, 13, 9, 17, 2, 6, 6, 10, 6, 14, 10, 18, 4, 12, 12, 20, 8, 24, 16, 32, 1, 3, 3, 5, 3, 7, 5, 9, 3, 7, 7, 11, 5, 13, 9, 17, 3
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2025

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The binary indices of 27 are {1,2,4,5}, with maximal runs ((1,2),(4,5)), with lengths (2,2), which is the 10th composition in standard order, so a(27) = 10.
The binary indices of 100 are {3,6,7}, with maximal runs ((3),(6,7)), with lengths (1,2), which is the 6th composition in standard order, so a(100) = 6.
		

Crossrefs

Sorted positions of firsts appearances appear to be A247648+1.
After removing duplicates we get A385818.
The reverse version is A385887.
A245563 lists run lengths of binary indices (ranks A246029), reverse A245562.
A384877 lists anti-run lengths of binary indices (ranks A385816), reverse A209859.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[Length/@Split[bpe[n],#2==#1+1&]],{n,0,100}]

A324200 a(n) = 2^(A000043(n)-1) * ((2^A059305(n)) - 1), where A059305 gives the prime index of the n-th Mersenne prime, while A000043 gives its exponent.

Original entry on oeis.org

6, 60, 32752, 137438953408
Offset: 1

Views

Author

Antti Karttunen, Feb 18 2019

Keywords

Comments

If there are no odd perfect numbers then these are the positions of zeros in A324185.
The next term has 314 digits:
11781361728633673532894774498354952494238773929196300355071513798753168641589311119865182769801300280680127783231251635087526446289021607771691249214388576215221396663491984443067742263787264024212477244347842938066577043117995647400274369612403653814737339068225047641453182709824206687753689912418253153056583680.

Crossrefs

Programs

Formula

a(n) = ((2^A000720(A000668(n)))-1) * 2^(A000043(n)-1) = ((2^A059305(n)) - 1) * 2^(A000043(n)-1).
If no odd perfect numbers exist, then a(n) = A243071(A000396(n)), and thus A007814(a(n)) = A007814(A000396(n)).
Previous Showing 21-30 of 85 results. Next