cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 58 results. Next

A259673 a(n) = sigma_(prime(n))(n).

Original entry on oeis.org

1, 9, 244, 16513, 48828126, 13062296532, 232630513987208, 144115462954287105, 8862938119746644274757, 100000000186264514923632574038, 191943424957750480504146841291812, 8505622499882988712256991112913772434548, 4695452425098908797088971409337422035076128814
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 03 2015

Keywords

Crossrefs

Cf. A000203 (sigma(n)), A000040 (prime(n)), A023887 (sigma_n(n)).
Cf. A001157 (sigma_2), A001158 (sigma_3), A001160 (sigma_5), A013955 (sigma_7).

Programs

  • Magma
    [DivisorSigma(NthPrime(n),n):n in [1..15]]; // Vincenzo Librandi, Jul 15 2015
    
  • Maple
    a:= n-> numtheory[sigma][ithprime(n)](n):
    seq(a(n), n=1..15);  # Alois P. Heinz, Feb 10 2020
  • Mathematica
    a[n_] := DivisorSigma[Prime[n], n]; Array[a, 13]
    (* Second program: *)
    a[n_] := SeriesCoefficient[Sum[k^Prime[n]*x^k/(1-x^k), {k, 1, n}], {x, 0, n}]; Array[a, 13] (* Jean-François Alcover, Sep 29 2017, from 2nd formula *)
  • PARI
    a(n) = sigma(n, prime(n)); \\ Michel Marcus, Jul 03 2015
    
  • Python
    from sympy import divisor_sigma, prime
    def A259673(n):
        return divisor_sigma(n,prime(n)) # Chai Wah Wu, Jul 20 2015

Formula

a(n) = sigma_(A000040(n))(n).
a(n) = [x^n] Sum_{k>=1} k^prime(n)*x^k/(1 - x^k). - Ilya Gutkovskiy, Sep 26 2017

Extensions

a(11) and a(12) from Anders Hellström, Jul 14 2015

A294948 Expansion of Product_{n>=1} (1 - n^n*x^n)^(1/n).

Original entry on oeis.org

1, -1, -2, -7, -57, -541, -7126, -108072, -1966034, -40620681, -952305757, -24824933859, -714742428220, -22491627743504, -768696164146118, -28344822040761041, -1121925480573229737, -47442205907345238412, -2134679753840086267669
Offset: 0

Views

Author

Seiichi Manyama, Nov 11 2017

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/n, g(n) = n^n.

Crossrefs

Column k=0 of A294947.

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-k^k*x^k)^(1/k)))

Formula

G.f.: exp(-Sum_{k>0} A023887(k)*x^k/k).
a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} A023887(k)*a(n-k) for n > 0.

A308593 a(n) = Sum_{d|n} d^(n^2/d).

Original entry on oeis.org

1, 5, 28, 513, 3126, 840242, 823544, 8606711809, 7625984905477, 1221277338483250, 285311670612, 89215914432866222355906, 302875106592254, 316913110043605007120962336162, 608295209422788113565012727970423808, 680564733921105089459460296530789924865
Offset: 1

Views

Author

Seiichi Manyama, Jun 09 2019

Keywords

Crossrefs

Diagonal of A308509.

Programs

  • Mathematica
    Table[Sum[d^(n^2/d), {d, Divisors[n]}], {n,1,20}] (* Vaclav Kotesovec, Jun 09 2019 *)
  • PARI
    {a(n) = sumdiv(n, d, d^(n^2/d))}

A308675 a(n) = Sum_{d|n} d^(d^2 * n).

Original entry on oeis.org

1, 257, 7625597484988, 340282366920938463463374607431768276993, 2350988701644575015937473074444491355637331113544175043017503412556834518909454345703126
Offset: 1

Views

Author

Seiichi Manyama, Jun 16 2019

Keywords

Comments

The next term has 169 digits. - Harvey P. Dale, Feb 29 2020

Crossrefs

Column k=3 of A308676.

Programs

  • Mathematica
    Table[Total[#^(#^2 n)&/@Divisors[n]],{n,5}] (* Harvey P. Dale, Feb 29 2020 *)
    a[n_] := DivisorSum[n, #^(n * #^2) &]; Array[a, 5] (* Amiram Eldar, May 11 2021 *)
  • PARI
    {a(n) = sumdiv(n, d, d^(d^2*n))}
    
  • PARI
    N=10; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k^k^2*x)^k)^(1/k)))))

Formula

L.g.f.: -log(Product_{k>=1} (1 - (k^(k^2)*x)^k)^(1/k)) = Sum_{k>=1} a(k)*x^k/k.

A321259 a(n) = sigma_n(n) - n^n.

Original entry on oeis.org

0, 1, 1, 17, 1, 794, 1, 65793, 19684, 9766650, 1, 2194095090, 1, 678223089234, 30531927033, 281479271743489, 1, 150196195641350171, 1, 100000096466944316978, 558545874543637211, 81402749386839765307626, 1, 79501574308536809523296482, 298023223876953126
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 01 2018

Keywords

Comments

a(n) is the sum of n-th powers of proper divisors of n.

Crossrefs

Programs

  • Magma
    [DivisorSigma(n, n) - n^n: n in [1..30]]; // Vincenzo Librandi, Nov 02 2018
    
  • Mathematica
    Table[DivisorSigma[n, n] - n^n, {n, 25}]
    nmax = 25; Rest[CoefficientList[Series[Sum[(k x)^(2 k)/(1 - (k x)^k), {k, 1, nmax}], {x, 0, nmax}], x]]
  • PARI
    a(n) = sigma(n, n) - n^n; \\ Michel Marcus, Nov 02 2018

Formula

G.f.: Sum_{k>=1} (k*x)^(2*k)/(1 - (k*x)^k).
a(n) = A023887(n) - A000312(n).
a(n) = A321258(n,n).
a(n) = 1 if n is prime.

A347718 a(n) = Sum of the divisors of sigma_n(n).

Original entry on oeis.org

1, 6, 56, 448, 6264, 96348, 1559520, 16908804, 391945400, 20553536052, 706019328000, 20210523379200, 519285252355776, 21710734431216480, 1456143373228677120, 25536237889612326912, 1792353900753729655758, 52839150354952425838080, 4154723599066412190910560
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 28 2022

Keywords

Examples

			a(3) = sigma(sigma_3(3)) = sigma(1^3+3^3) = sigma(28) = 1+2+4+7+14+28 = 56.
		

Crossrefs

Programs

  • Maple
    a:= n-> (s-> s(s[n](n)))(numtheory[sigma]):
    seq(a(n), n=1..20);  # Alois P. Heinz, Jan 28 2022
  • Mathematica
    Table[DivisorSigma[1, DivisorSigma[n, n]], {n, 20}]
  • Python
    from math import prod
    from collections import Counter
    from sympy import factorint
    def A347718(n): return prod((q**(r+1)-1)//(q-1) for q,r in sum((Counter(factorint((p**(n*(e+1))-1)//(p**n-1))) for p, e in factorint(n).items()),Counter()).items()) # Chai Wah Wu, Jan 28 2022

Formula

a(n) = sigma(sigma_n(n)).
a(n) = A000203(A023887(n)). - Michel Marcus, Jan 29 2022

A351749 a(n) = Sum_{p|n, p prime} sigma_p(p).

Original entry on oeis.org

0, 5, 28, 5, 3126, 33, 823544, 5, 28, 3131, 285311670612, 33, 302875106592254, 823549, 3154, 5, 827240261886336764178, 33, 1978419655660313589123980, 3131, 823572, 285311670617, 20880467999847912034355032910568, 33, 3126, 302875106592259
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 17 2022

Keywords

Comments

Inverse Möbius transform of sigma_n(n) * c(n), where c(n) is the characteristic function of primes (A010051). - Wesley Ivan Hurt, Apr 01 2025

Examples

			a(6) = 33; a(6) = Sum_{p|6, p prime} sigma_p(p) = sigma_2(2) + sigma_3(3) = (1^2 + 2^2) + (1^3 + 3^3) = 33.
		

Crossrefs

Cf. A010051, A023887 (sigma_n(n)).

Formula

a(p^k) = p^p + 1, for p prime and k >= 1.
a(n) = Sum_{d|n} sigma_d(d) * c(d), where c = A010051. - Wesley Ivan Hurt, Apr 01 2025

A352841 Expansion of e.g.f. 1/(1 - Sum_{k>=1} sigma_k(k) * x^k/k!).

Original entry on oeis.org

1, 1, 7, 64, 851, 13906, 277972, 6466650, 172651643, 5186830537, 173327806752, 6373233407498, 255743444526584, 11119651415719744, 520752884139087852, 26132341317365562754, 1398900109763305183707, 79569524691656775423766
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, sigma(k, k)*x^k/k!))))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, sigma(k, k)*binomial(n, k)*a(n-k)));

Formula

a(0) = 1; a(n) = Sum_{k=1..n} sigma_k(k) * binomial(n,k) * a(n-k).

A363662 a(n) = Sum_{d|n} (n/d)^n * binomial(d+n,n).

Original entry on oeis.org

2, 18, 128, 1590, 19002, 353304, 6591776, 154083654, 3878583770, 110647791078, 3423740752764, 116116072618104, 4240251502692142, 166761491097360240, 7006327371058071648, 313637735782416564806, 14890324713956395361406, 747610406539465959084870
Offset: 1

Views

Author

Seiichi Manyama, Jun 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (n/#)^n * Binomial[# + n, n] &]; Array[a, 20] (* Amiram Eldar, Jul 12 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d)^n*binomial(d+n, n));

Formula

a(n) = [x^n] Sum_{k>0} (1/(1 - (k*x)^k)^(n+1) - 1).

A376015 a(n) = Sum_{d|n} d^n * binomial(n/d,d).

Original entry on oeis.org

1, 2, 3, 20, 5, 198, 7, 1544, 19692, 10250, 11, 2187216, 13, 344078, 143489085, 4296802320, 17, 7757846982, 19, 5497605324820, 366112362126, 230686742, 23, 4237941811999056, 298023223876953150, 5234491418, 640550188738935, 2522015815755104284
Offset: 1

Views

Author

Seiichi Manyama, Sep 06 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, d^n*binomial(n/d, d));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, ((k*x)^k)^k/(1-(k*x)^k)^(k+1)))
    
  • Python
    from math import comb
    from itertools import takewhile
    from sympy import divisors
    def A376015(n): return sum(d**n*comb(n//d,d) for d in takewhile(lambda d:d**2<=n,divisors(n))) # Chai Wah Wu, Sep 06 2024

Formula

G.f.: Sum_{k>=1} ((k*x)^k)^k / (1 - (k*x)^k)^(k+1).
If p is prime, a(p) = p.
Previous Showing 31-40 of 58 results. Next