A259673
a(n) = sigma_(prime(n))(n).
Original entry on oeis.org
1, 9, 244, 16513, 48828126, 13062296532, 232630513987208, 144115462954287105, 8862938119746644274757, 100000000186264514923632574038, 191943424957750480504146841291812, 8505622499882988712256991112913772434548, 4695452425098908797088971409337422035076128814
Offset: 1
-
[DivisorSigma(NthPrime(n),n):n in [1..15]]; // Vincenzo Librandi, Jul 15 2015
-
a:= n-> numtheory[sigma][ithprime(n)](n):
seq(a(n), n=1..15); # Alois P. Heinz, Feb 10 2020
-
a[n_] := DivisorSigma[Prime[n], n]; Array[a, 13]
(* Second program: *)
a[n_] := SeriesCoefficient[Sum[k^Prime[n]*x^k/(1-x^k), {k, 1, n}], {x, 0, n}]; Array[a, 13] (* Jean-François Alcover, Sep 29 2017, from 2nd formula *)
-
a(n) = sigma(n, prime(n)); \\ Michel Marcus, Jul 03 2015
-
from sympy import divisor_sigma, prime
def A259673(n):
return divisor_sigma(n,prime(n)) # Chai Wah Wu, Jul 20 2015
A294948
Expansion of Product_{n>=1} (1 - n^n*x^n)^(1/n).
Original entry on oeis.org
1, -1, -2, -7, -57, -541, -7126, -108072, -1966034, -40620681, -952305757, -24824933859, -714742428220, -22491627743504, -768696164146118, -28344822040761041, -1121925480573229737, -47442205907345238412, -2134679753840086267669
Offset: 0
A308593
a(n) = Sum_{d|n} d^(n^2/d).
Original entry on oeis.org
1, 5, 28, 513, 3126, 840242, 823544, 8606711809, 7625984905477, 1221277338483250, 285311670612, 89215914432866222355906, 302875106592254, 316913110043605007120962336162, 608295209422788113565012727970423808, 680564733921105089459460296530789924865
Offset: 1
-
Table[Sum[d^(n^2/d), {d, Divisors[n]}], {n,1,20}] (* Vaclav Kotesovec, Jun 09 2019 *)
-
{a(n) = sumdiv(n, d, d^(n^2/d))}
A308675
a(n) = Sum_{d|n} d^(d^2 * n).
Original entry on oeis.org
1, 257, 7625597484988, 340282366920938463463374607431768276993, 2350988701644575015937473074444491355637331113544175043017503412556834518909454345703126
Offset: 1
-
Table[Total[#^(#^2 n)&/@Divisors[n]],{n,5}] (* Harvey P. Dale, Feb 29 2020 *)
a[n_] := DivisorSum[n, #^(n * #^2) &]; Array[a, 5] (* Amiram Eldar, May 11 2021 *)
-
{a(n) = sumdiv(n, d, d^(d^2*n))}
-
N=10; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k^k^2*x)^k)^(1/k)))))
A321259
a(n) = sigma_n(n) - n^n.
Original entry on oeis.org
0, 1, 1, 17, 1, 794, 1, 65793, 19684, 9766650, 1, 2194095090, 1, 678223089234, 30531927033, 281479271743489, 1, 150196195641350171, 1, 100000096466944316978, 558545874543637211, 81402749386839765307626, 1, 79501574308536809523296482, 298023223876953126
Offset: 1
-
[DivisorSigma(n, n) - n^n: n in [1..30]]; // Vincenzo Librandi, Nov 02 2018
-
Table[DivisorSigma[n, n] - n^n, {n, 25}]
nmax = 25; Rest[CoefficientList[Series[Sum[(k x)^(2 k)/(1 - (k x)^k), {k, 1, nmax}], {x, 0, nmax}], x]]
-
a(n) = sigma(n, n) - n^n; \\ Michel Marcus, Nov 02 2018
A347718
a(n) = Sum of the divisors of sigma_n(n).
Original entry on oeis.org
1, 6, 56, 448, 6264, 96348, 1559520, 16908804, 391945400, 20553536052, 706019328000, 20210523379200, 519285252355776, 21710734431216480, 1456143373228677120, 25536237889612326912, 1792353900753729655758, 52839150354952425838080, 4154723599066412190910560
Offset: 1
a(3) = sigma(sigma_3(3)) = sigma(1^3+3^3) = sigma(28) = 1+2+4+7+14+28 = 56.
-
a:= n-> (s-> s(s[n](n)))(numtheory[sigma]):
seq(a(n), n=1..20); # Alois P. Heinz, Jan 28 2022
-
Table[DivisorSigma[1, DivisorSigma[n, n]], {n, 20}]
-
from math import prod
from collections import Counter
from sympy import factorint
def A347718(n): return prod((q**(r+1)-1)//(q-1) for q,r in sum((Counter(factorint((p**(n*(e+1))-1)//(p**n-1))) for p, e in factorint(n).items()),Counter()).items()) # Chai Wah Wu, Jan 28 2022
A351749
a(n) = Sum_{p|n, p prime} sigma_p(p).
Original entry on oeis.org
0, 5, 28, 5, 3126, 33, 823544, 5, 28, 3131, 285311670612, 33, 302875106592254, 823549, 3154, 5, 827240261886336764178, 33, 1978419655660313589123980, 3131, 823572, 285311670617, 20880467999847912034355032910568, 33, 3126, 302875106592259
Offset: 1
a(6) = 33; a(6) = Sum_{p|6, p prime} sigma_p(p) = sigma_2(2) + sigma_3(3) = (1^2 + 2^2) + (1^3 + 3^3) = 33.
A352841
Expansion of e.g.f. 1/(1 - Sum_{k>=1} sigma_k(k) * x^k/k!).
Original entry on oeis.org
1, 1, 7, 64, 851, 13906, 277972, 6466650, 172651643, 5186830537, 173327806752, 6373233407498, 255743444526584, 11119651415719744, 520752884139087852, 26132341317365562754, 1398900109763305183707, 79569524691656775423766
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, sigma(k, k)*x^k/k!))))
-
a(n) = if(n==0, 1, sum(k=1, n, sigma(k, k)*binomial(n, k)*a(n-k)));
A363662
a(n) = Sum_{d|n} (n/d)^n * binomial(d+n,n).
Original entry on oeis.org
2, 18, 128, 1590, 19002, 353304, 6591776, 154083654, 3878583770, 110647791078, 3423740752764, 116116072618104, 4240251502692142, 166761491097360240, 7006327371058071648, 313637735782416564806, 14890324713956395361406, 747610406539465959084870
Offset: 1
-
a[n_] := DivisorSum[n, (n/#)^n * Binomial[# + n, n] &]; Array[a, 20] (* Amiram Eldar, Jul 12 2023 *)
-
a(n) = sumdiv(n, d, (n/d)^n*binomial(d+n, n));
A376015
a(n) = Sum_{d|n} d^n * binomial(n/d,d).
Original entry on oeis.org
1, 2, 3, 20, 5, 198, 7, 1544, 19692, 10250, 11, 2187216, 13, 344078, 143489085, 4296802320, 17, 7757846982, 19, 5497605324820, 366112362126, 230686742, 23, 4237941811999056, 298023223876953150, 5234491418, 640550188738935, 2522015815755104284
Offset: 1
-
a(n) = sumdiv(n, d, d^n*binomial(n/d, d));
-
my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, ((k*x)^k)^k/(1-(k*x)^k)^(k+1)))
-
from math import comb
from itertools import takewhile
from sympy import divisors
def A376015(n): return sum(d**n*comb(n//d,d) for d in takewhile(lambda d:d**2<=n,divisors(n))) # Chai Wah Wu, Sep 06 2024
Comments