cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A274908 Largest prime factor of 8^n - 1.

Original entry on oeis.org

7, 7, 73, 13, 151, 73, 337, 241, 262657, 331, 599479, 109, 121369, 5419, 23311, 673, 131071, 262657, 1212847, 1321, 649657, 599479, 10052678938039, 38737, 10567201, 22366891, 97685839, 14449, 9857737155463, 18837001, 658812288653553079, 22253377
Offset: 1

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			8^5 -1 = 32767 = 7*31*151, so a(5) = 151.
		

Crossrefs

Cf. similar sequences listed in A274906.

Programs

  • Magma
    [Maximum(PrimeDivisors(8^n-1)): n in [1..40]];
  • Maple
    f:= n -> max(map(t -> max(numtheory:-factorset(subs(x=2,t[1]))), factors(x^(3*n)-1)[2])):
    map(f, [$1..120]); # Robert Israel, Jul 12 2016
  • Mathematica
    Table[FactorInteger[8^n - 1][[-1, 1]], {n, 40}]

Formula

a(n) = A006530(A024088(n)). - Michel Marcus, Jul 11 2016
a(n) = A005420(3*n). - Robert Israel, Jul 12 2016

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 13 2016
a(101)-a(402) in b-file from Amiram Eldar, Feb 02 2020
a(403)-a(500) in b-file from Max Alekseyev, Apr 25 2022, Sep 11 2022, Dec 05 2022, Feb 25 2023

A238538 A fourth-order linear divisibility sequence: a(n) = (2^n + 1)*(2^(3*n) - 1)/ ( (2 + 1)*(2^3 - 1) ).

Original entry on oeis.org

1, 15, 219, 3315, 51491, 811395, 12882499, 205321155, 3278747331, 52408827075, 838132189379, 13406842675395, 214483303960771, 3431523432591555, 54902699475185859, 878429788032676035, 14054769379960303811, 224875452250864496835, 3598000373385828511939
Offset: 1

Views

Author

Peter Bala, Feb 28 2014

Keywords

Comments

This is a fourth-order linear divisibility sequence, that is, the sequence satisfies a linear recurrence of order 4 and if n | m then a(n) | a(m). This is a consequence of the following more general result: The polynomials P(n,x,y) := (x^n + y^n)*(x^(3*n) - y^(3*n)) form a fourth-order linear divisibility sequence in the polynomial ring Z[x,y]. See the Bala link.
Hence, for a fixed integers M and N, the normalized sequence (M^n + N^n)*(M^(3*n) - N^(3*n))/ ( (M + N)*(M^3 - N^3) ) for n = 1,2,3,... is a linear divisibility sequence of order 4. It has the rational o.g.f. x*(1 - 2*M*N*(M^2 - M*N + N^2)*x + (M*N)^4*x^2)/( (1 - M^4*x)*(1 - M^3*N*x)*(1 - M*N^3*x)*(1 - N^4*x) ). This is the case M = 2, N = 1. For other cases see A238539(M = 2, N = -1), A238540(M = 3, N = 1) and A238541(M = 3, N = 2). See also A238536, A238537 and A215466.
Note, these sequences do not belong to the family of linear divisibility sequences of the fourth order studied by Williams and Guy, which have o.g.f.s of the form x*(1 - q*x^2)/Q(x), Q(x) a quartic polynomial and q an integer parameter.

Crossrefs

Programs

  • Maple
    seq(1/21*(2^n + 1)*(2^(3*n) - 1), n = 1..20);
  • Mathematica
    LinearRecurrence[{27,-202,432,-256},{1,15,219,3315},20] (* Harvey P. Dale, Jul 04 2019 *)

Formula

a(n) = (1/21)*(2^n + 1)*(2^(3*n) - 1) = A000051(n)*A024088(n)/21.
a(n) = (1/21)*(4^n - 1)*(8^n - 1)/(2^n - 1).
O.g.f.: x*(1 - 12*x + 16*x^2)/((1 - x)*(1 - 2*x)*(1 - 8*x)*(1 - 16*x)).
Recurrence equation: a(n) = 27*a(n-1) - 202*a(n-2) + 432*a(n-4) - 256*a(n-4).

A125837 Numbers whose base 8 or octal representation is 6666666......6.

Original entry on oeis.org

0, 6, 54, 438, 3510, 28086, 224694, 1797558, 14380470, 115043766, 920350134, 7362801078, 58902408630, 471219269046, 3769754152374, 30158033218998, 241264265751990, 1930114126015926, 15440913008127414, 123527304065019318, 988218432520154550, 7905747460161236406
Offset: 1

Views

Author

Zerinvary Lajos, Feb 03 2007

Keywords

Crossrefs

Programs

  • GAP
    List([1..30], n-> 6*(8^(n-1)-1)/7); # G. C. Greubel, Aug 03 2019
  • Magma
    [6*(8^(n-1)-1)/7: n in [1..30]]; // G. C. Greubel, Aug 03 2019
    
  • Maple
    seq(6*(8^n-1)/7, n=0..30);
  • Mathematica
    FromDigits[#,8]&/@Table[Table[6,{i}],{i,0,30}]  (* Harvey P. Dale, Mar 19 2011 *)
    6*(8^(Range[30]-1) -1)/7 (* G. C. Greubel, Aug 03 2019 *)
  • PARI
    vector(30, n, 6*(8^(n-1)-1)/7) \\ G. C. Greubel, Aug 03 2019
    
  • Sage
    [6*(8^(n-1)-1)/7 for n in (1..30)] # G. C. Greubel, Aug 03 2019
    

Formula

a(n) = 6*(8^(n-1) -1)/7 = 6*A023001(n-1).
a(n) = 8*a(n-1) + 6 for n>1, a(1)=0. - Vincenzo Librandi, Oct 03 2010
G.f.: 6*x^2/( (1-x)*(1-8*x) ). - R. J. Mathar, Oct 07 2016
E.g.f.: 6*(exp(8*x) - exp(x))/7. - G. C. Greubel, Aug 03 2019
a(n) = -1 + A083068(n-1). - Alois P. Heinz, May 20 2023

A125836 Numbers whose base 8 or octal representation is 555555555......5.

Original entry on oeis.org

0, 5, 45, 365, 2925, 23405, 187245, 1497965, 11983725, 95869805, 766958445, 6135667565, 49085340525, 392682724205, 3141461793645, 25131694349165, 201053554793325, 1608428438346605, 12867427506772845, 102939420054182765
Offset: 1

Views

Author

Zerinvary Lajos, Feb 03 2007

Keywords

Examples

			Octal...............decimal
0........................0
5........................5
55......................45
555....................365
5555..................2925
55555................23405
555555..............187245
5555555............1497965
55555555..........11983725
555555555.........95869805
5555555555.......766958445
etc. ...............etc.
		

Crossrefs

Programs

  • GAP
    List([1..30], n-> 5*(8^(n-1) -1)/7); # G. C. Greubel, Aug 03 2019
  • Magma
    [5*(8^(n-1) -1)/7: n in [1..30]]; // G. C. Greubel, Aug 03 2019
    
  • Maple
    seq(5*(8^n-1)/7, n=0..30);
  • Mathematica
    5*(8^(Range[30]-1) -1)/7 (* G. C. Greubel, Aug 03 2019 *)
  • PARI
    vector(30, n, 5*(8^(n-1) -1)/7) \\ G. C. Greubel, Aug 03 2019
    
  • Sage
    [5*(8^(n-1) -1)/7 for n in (1..30)] # G. C. Greubel, Aug 03 2019
    

Formula

a(n) = 5*(8^(n-1) -1)/7 = 5*A023001(n-1).
a(n) = 8*a(n-1) + 5, with a(1)=0. - Vincenzo Librandi, Sep 30 2010
G.f.: 5*x^2/( (1-x)*(1-8*x)). - R. J. Mathar, Sep 30 2013
From G. C. Greubel, Aug 03 2019: (Start)
a(n) = 5*A024088(n-1)/7.
E.g.f.: 5*(exp(8*x) - exp(x))/7. (End)

A167617 G.f.: x^2*(3+3*x+x^2) / ( (2*x+1) * (1+x) * (1+x+x^2) * (x^2-x+1) ) .

Original entry on oeis.org

0, 0, 3, -6, 10, -21, 42, -84, 171, -342, 682, -1365, 2730, -5460, 10923, -21846, 43690, -87381, 174762, -349524, 699051, -1398102, 2796202, -5592405, 11184810, -22369620, 44739243, -89478486, 178956970, -357913941, 715827882, -1431655764, 2863311531
Offset: 0

Views

Author

Paul Curtz, Nov 07 2009

Keywords

Comments

The derived sequence a(n+1) + 2*a(n) reads 0,3,0,-2,-1,0 (and repeat with period 6).

Crossrefs

Cf. A167613.

Programs

  • Mathematica
    CoefficientList[Series[x^2(3+3x+x^2)/((2x+1)(1+x)(1+x+x^2)(x^2-x+1)), {x,0,40}],x] (* or *) LinearRecurrence[{-3,-3,-3,-3,-3,-2},{0,0,3,-6,10,-21},40] (* Harvey P. Dale, Sep 08 2011 *)

Formula

a(3*k+2) + a(3*k+3) + a(3*k+4) = (-1)^(k+1)*A024088(k+1).
a(n) = (-1)^n*A024495(n+1) + A131531(n+1).
a(n) = -3*a(n-1) -3*a(n-2) -3*a(n-3) -3*a(n-4) -3*a(n-5) -2*a(n-6).

Extensions

Edited and extended by R. J. Mathar, Nov 12 2009

A333813 a(n) = 2^(1 + floor(n*log_2(3))) - (3^n + 1).

Original entry on oeis.org

0, 0, 6, 4, 46, 12, 294, 1908, 1630, 13084, 6486, 84996, 517134, 502828, 3605638, 2428308, 24062142, 5077564, 149450422, 985222180, 808182894, 6719515980, 2978678758, 43295774644, 267326277406, 252223018332, 1856180682774, 1170495537220
Offset: 0

Views

Author

Ctibor O. Zizka, Apr 06 2020

Keywords

Comments

For integers X, Y, let a(n) = (X^(t+1) - 1) / (X - 1) - Y^n, where t = floor(n*log_X(Y)) . This sequence is for X = 2, Y = 3.

Examples

			a(0) = 2^(1 + floor(0*log_2(3))) - (3^0 + 1) = 0; a(4) = 2^(1 + floor(4*log_2(3))) - (3^4 + 1) = 46.
		

Crossrefs

Examples for integers X = Y from {2, 3, 4, 5, 6, 7, 8, 9, 10} are A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275. Examples for X = 2, Y = 4 are A024036; for X = 2, Y = 8, A024088; and for X = 3, Y = 9, A191681.

Programs

  • Mathematica
    Table[2^(1+Floor[n Log2[3]])-(3^n+1),{n,0,30}] (* Harvey P. Dale, Sep 04 2023 *)

Formula

a(n) = 2^(1 + floor(n*log_2(3))) - (3^n + 1).
Previous Showing 11-16 of 16 results.