cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A366660 Number of distinct prime divisors of 9^n - 1.

Original entry on oeis.org

1, 2, 3, 3, 3, 5, 3, 5, 6, 5, 5, 7, 3, 6, 8, 6, 6, 9, 5, 7, 8, 8, 4, 12, 7, 6, 11, 9, 7, 12, 6, 7, 10, 9, 8, 12, 6, 8, 12, 11, 6, 14, 4, 12, 16, 7, 8, 15, 10, 12, 13, 9, 6, 15, 11, 14, 13, 10, 5, 18, 5, 10, 16, 8, 9, 15, 6, 13, 13, 15, 7, 19, 7, 10, 19, 13, 11
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 1, 100, print1(omega(9^n - 1), ", "))

Formula

a(n) = omega(9^n-1) = A001221(A024101(n)).
a(n) = A133801(2*n) = A133801(n) + A366580(n) - 1. - Max Alekseyev, Jan 07 2024

A024140 a(n) = 12^n - 1.

Original entry on oeis.org

0, 11, 143, 1727, 20735, 248831, 2985983, 35831807, 429981695, 5159780351, 61917364223, 743008370687, 8916100448255, 106993205379071, 1283918464548863, 15407021574586367, 184884258895036415
Offset: 0

Views

Author

Keywords

Comments

In base 12 these are 0, B, BB, BBB, ... . - David Rabahy, Dec 12 2016

Crossrefs

Cf. Similar sequences of the type k^n-1: A000004 (k=1), A000225 (k=2), A024023 (k=3), A024036 (k=4), A024049 (k=5), A024062 (k=6), A024075 (k=7), A024088 (k=8), A024101 (k=9), A002283 (k=10), A024127 (k=11), this sequence (k=12).

Programs

  • Mathematica
    12^Range[0,20]-1 (* or *) LinearRecurrence[{13,-12},{0,11},20] (* Harvey P. Dale, Feb 01 2019 *)

Formula

From Mohammad K. Azarian, Jan 14 2009: (Start)
G.f.: 1/(1-12*x) - 1/(1-x).
E.g.f.: exp(12*x) - exp(x). (End)
a(n) = 12*a(n-1) + 11 for n>0, a(0)=0. - Vincenzo Librandi, Nov 18 2010
a(n) = Sum_{i=1..n} 11^i*binomial(n,n-i) for n>0, a(0)=0. - Bruno Berselli, Nov 11 2015
From Elmo R. Oliveira, Dec 15 2023: (Start)
a(n) = 13*a(n-1) - 12*a(n-2) for n>1.
a(n) = A001021(n)-1 = A178248(n)-2.
a(n) = 11*(A016125(n) - 1)/12. (End)

A173952 a(1)=32 and, for n > 1, a(n) = 9*a(n-1) + 32.

Original entry on oeis.org

32, 320, 2912, 26240, 236192, 2125760, 19131872, 172186880, 1549681952, 13947137600, 125524238432, 1129718145920, 10167463313312, 91507169819840, 823564528378592, 7412080755407360, 66708726798666272, 600378541187996480
Offset: 1

Views

Author

John W. Layman, Mar 03 2010

Keywords

Comments

It appears that all terms of this sequence are also terms of A173951.
Also, it appears that a(n) has the base-3 representation 1,0,2^(2n-2),1,2 where 2^k denotes k consecutive 2's.

Crossrefs

Cf. A173951.

Programs

Formula

From R. J. Mathar, Mar 04 2010: (Start)
a(n) = 4*(9^n-1) = 4*A024101(n) = 10*a(n-1) - 9*a(n-2).
G.f.: 32*x/ ((9*x-1) * (x-1)). (End)

A363228 Exponent of 4 in 9^n - 1.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2
Offset: 1

Views

Author

Ruud H.G. van Tol, May 21 2023

Keywords

Comments

Not the same as A147648-without-zeros.

Crossrefs

Programs

  • Mathematica
    a[n_] := IntegerExponent[2*n, 4] + 1; Array[a, 100] (* Amiram Eldar, May 22 2023 *)
  • PARI
    a(n) = valuation(2*n, 4) + 1;
    
  • Python
    def A363228(n): return (~n&n-1).bit_length()+3>>1 # Chai Wah Wu, Jul 09 2023

Formula

a(n) = floor(A090739(n)/2).
a(n) = A244415(n) + 1.
a(n) = A235127(A024101(n)). - Michel Marcus, May 21 2023
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5/3. - Amiram Eldar, Jul 13 2023
Conjecture: a(n) = A235127(A000045(6*n)), all other 4-adic 6-sections A235127(A000045(.))=0. - R. J. Mathar, Jun 28 2025

A122760 Triangle read by rows: t(n,m) = 2*3^m*(n mod 2).

Original entry on oeis.org

0, 2, 6, 0, 0, 0, 2, 6, 18, 54, 0, 0, 0, 0, 0, 2, 6, 18, 54, 162, 486, 0, 0, 0, 0, 0, 0, 0, 2, 6, 18, 54, 162, 486, 1458, 4374, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Roger L. Bagula, Sep 21 2006

Keywords

Comments

A Cantor-based power of 3 triangular array.

Examples

			0
2, 6
0, 0, 0
2, 6, 18, 54
0, 0, 0, 0, 0
2, 6, 18, 54, 162, 486
0, 0, 0, 0, 0, 0, 0
2, 6, 18, 54, 162, 486, 1458, 4374
		

References

  • Lynn Arthur Steen and J. Arthur Seebach, Jr., Counterexamples in Topology, Dover, New York, 1978, 57-58

Crossrefs

Row sums: see A024101.

Programs

  • Mathematica
    b[n_] := 2*Mod[n, 2] T2[n_, m_] := 3^n*b[m] b0 = Table[Table[T2[n, m], {n, 0, m}], {m, 0, 10}]; Flatten[b0] MatrixForm[b0]

Extensions

Edited and corrected by N. J. A. Sloane, May 29 2009
Previous Showing 21-25 of 25 results.