cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 51 results. Next

A085440 a(n) = Sum_{i=1..n} binomial(i+1,2)^5.

Original entry on oeis.org

1, 244, 8020, 108020, 867395, 4951496, 22161864, 82628040, 267156165, 770440540, 2022773116, 4909947484, 11150268935, 23913084560, 48796284560, 95322158736, 179163294729, 325374464580, 572984364580, 981394464580, 1639143014731, 2675722491224, 4277290592600
Offset: 1

Views

Author

André F. Labossière, Jun 30 2003

Keywords

References

  • Elisabeth Busser and Gilles Cohen, Neuro-Logies - "Chercher, jouer, trouver", La Recherche, April 1999, No. 319, page 97.

Crossrefs

Programs

  • Magma
    [(113400*n^11 +1247400*n^10 +5544000*n^9 +12474000*n^8 +14196600*n^7 +6237000*n^6 -831600*n^5 +1108800*n^3 -172800*n )/Factorial(11): n in [1..30]]; // G. C. Greubel, Nov 22 2017
  • Mathematica
    Table[(113400*n^11 +1247400*n^10 +5544000*n^9 +12474000*n^8 +14196600*n^7 +6237000*n^6 -831600*n^5 +1108800*n^3 -172800*n)/11!, {n,1,50}] (* G. C. Greubel, Nov 22 2017 *)
  • PARI
    for(n=1,30, print1(sum(k=1,n, binomial(k+1,2)^5), ", ")) \\ G. C. Greubel, Nov 22 2017
    

Formula

a(n) = (113400*n^11 +1247400*n^10 +5544000*n^9 +12474000*n^8 +14196600*n^7 +6237000*n^6 -831600*n^5 +1108800*n^3 -172800*n)/11!.
G.f.: x*(x^8+232*x^7+5158*x^6+27664*x^5+47290*x^4+27664*x^3+5158*x^2+232*x+1) / (x-1)^12. - Colin Barker, May 02 2014

Extensions

Formula edited by Colin Barker, May 02 2014

A085441 a(n) = Sum_{i=1..n} binomial(i+1,2)^6.

Original entry on oeis.org

1, 730, 47386, 1047386, 12438011, 98204132, 580094436, 2756876772, 11060642397, 38741283022, 121395233038, 346594833742, 914464085783, 2254559726408, 5240543726408, 11568062614344, 24395756421273, 49397866465794, 96443747465794, 182209868465794
Offset: 1

Views

Author

André F. Labossière, Jul 07 2003

Keywords

Examples

			a(5) = C(7,3)*[191*106 + 450*(18*C(14,10) + 3851*C(13,10) + 61839*C(12,10) + 225352*C(11,10) + 225352*C(10,10))]/10010 = 12438011.
		

Crossrefs

Programs

  • Magma
    [(n/960960)*(6112 - 40040*n^2 + 78078*n^4 + 15015*n^5 + 19305*n^6 + 225225*n^7 + 335335*n^8 + 225225*n^9 + 80535*n^10 + 15015*n^11 + 1155*n^12): n in [1..30]]; // G. C. Greubel, Nov 22 2017
  • Maple
    f:= sum(binomial(1+i,2)^6,i=1..n):
    seq(f, n=1..30); # Robert Israel, Nov 22 2017
  • Mathematica
    Table[Sum[Binomial[i+1,2]^6,{i,n}],{n,20}] (* or *) LinearRecurrence[ {14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1},{1,730,47386,1047386,12438011, 98204132,580094436, 2756876772,11060642397, 38741283022,121395233038, 346594833742, 914464085783, 2254559726408},20] (* Harvey P. Dale, Jun 05 2017 *)
  • PARI
    for(n=1,30, print1(sum(k=1,n, binomial(k+1,2)^6), ", ")) \\ G. C. Greubel, Nov 22 2017
    

Formula

G.f.: x*(x^10 +716*x^9 +37257*x^8 +450048*x^7 +1822014*x^6 +2864328*x^5 +1822014*x^4 +450048*x^3 +37257*x^2 +716*x +1) / (x -1)^14. - Colin Barker, May 02 2014
a(n) = (n/960960)*(6112 - 40040*n^2 + 78078*n^4 + 15015*n^5 + 19305*n^6 + 225225*n^7 + 335335*n^8 + 225225*n^9 + 80535*n^10 + 15015*n^11 + 1155*n^12). - G. C. Greubel, Nov 22 2017

A086022 a(n) = Sum_{i=1..n} C(i+2,3)^4.

Original entry on oeis.org

1, 257, 10257, 170257, 1670882, 11505378, 61292514, 268652514, 1009853139, 3352413139, 10042998755, 27598188771, 70457539396, 168802499396, 382616259396, 825980472132, 1707628231653, 3396588391653, 6525595601653, 12150082161653, 21987344308134, 38769279231910
Offset: 1

Views

Author

André F. Labossière, Jul 11 2003

Keywords

Examples

			a(8) = C(11,4)*[-41*2793 + 350*(47*C(16,9) + 1749*C(15,9) + 9292*C(14,9) + 9292*C(13,9) + 1749*C(12,9) + 47*C(11,9))]/15015 = 268652514 .
		

Crossrefs

Programs

  • Magma
    [(n/12972960)*(-8856 +60060*n^2 +165165*n^3 +841841*n^4 +2462460*n^5 +3709420*n^6 +3243240*n^7 +1756755*n^8 +600600*n^9 +126490*n^10 +15015*n^11 +770*n^12): n in [1..30]]; // G. C. Greubel, Nov 22 2017
  • Mathematica
    Accumulate[Binomial[Range[3,30],3]^4] (* Harvey P. Dale, Oct 09 2016 *)
  • PARI
    for(n=1,30, print1((n/12972960)*(-8856 + 60060*n^2 + 165165*n^3 + 841841*n^4 + 2462460*n^5 + 3709420*n^6 + 3243240*n^7 + 1756755*n^8 + 600600*n^9 + 126490*n^10 + 15015*n^11 + 770*n^12), ", ")) \\ G. C. Greubel, Nov 22 2017
    

Formula

G.f.: x*(1+x)*(x^8 +242*x^7 +6508*x^6 +43174*x^5 +84950*x^4 +43174*x^3 +6508*x^2 +242*x + 1) / (x-1)^14 . - R. J. Mathar, Dec 22 2013
(n-1)^4*a(n) +(-2*n^4 -4*n^3 -30*n^2 -28*n -17)*a(n-1) +(n+2)^4*a(n-2)=0. - R. J. Mathar, Dec 22 2013
a(n) = C(n+3,4)*[-41*F3(n) +350*(47*C(n+8,9) + 1749*C(n+7,9) + 9292*C(n+6,9) + 9292*C(n+5,9) + 1749*C(n+4,9) + 47*C(n+3,9))]/15015, where F3(n) = -C(3,0)*C(n+3,0) + C(4,1)*C(n+3,1) - C(5,2)*C(n+3,2) + C(6,3)*C(n+3,3). The value of F3(n), (n=0..8) is: 1, 35, 119, 273, 517, 871, 1355, 1989, 2793, ... - Yahia Kahloune, Dec 23 2013
a(n) = (n/12972960)*(-8856 + 60060*n^2 + 165165*n^3 + 841841*n^4 + 2462460*n^5 + 3709420*n^6 + 3243240*n^7 + 1756755*n^8 + 600600*n^9 + 126490*n^10 + 15015*n^11 + 770*n^12). - G. C. Greubel, Nov 22 2017

A101094 a(n) = n*(n+1)*(n+2)*(n+3)*(1+3*n+n^2)/120.

Original entry on oeis.org

1, 11, 57, 203, 574, 1386, 2982, 5874, 10791, 18733, 31031, 49413, 76076, 113764, 165852, 236436, 330429, 453663, 612997, 816431, 1073226, 1394030, 1791010, 2277990, 2870595, 3586401, 4445091, 5468617, 6681368, 8110344, 9785336
Offset: 1

Views

Author

Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004

Keywords

Comments

Partial sums of A024166. Third partial sums of cubes (A000578).
Antidiagonal sums of the array A213564. - Clark Kimberling, Jun 18 2012

Crossrefs

Programs

  • Magma
    [n*(n+1)*(n+2)*(n+3)*(1+3*n+n^2)/120 : n in [1..35]]; // Vincenzo Librandi, Apr 23 2015
  • Mathematica
    Table[n*(n + 1)*(n + 2)*(n + 3)*(1 + 3*n + n^2)/120, {n, 31}] (* Michael De Vlieger, Apr 20 2015 *)
  • Sage
    [n*(n+1)*(n+2)*(n+3)*(1+3*n+n^2)/120 for n in range(1,32)] # Danny Rorabaugh, Apr 20 2015
    

Formula

This sequence could be obtained from the general formula n*(n+1)*(n+2)*(n+3)*...*(n+k)*(n*(n+k)+(k-1)*k/6)/((k+3)!/6) at k=3. - Alexander R. Povolotsky, May 17 2008
G.f.: -x*(1+4*x+x^2) / (x-1)^7. - R. J. Mathar, Dec 06 2011
Sum_{n>0} 1/a(n) = (8/3)*(25-9*sqrt(5)*Pi*tan(sqrt(5)*Pi/2)). - Enrique Pérez Herrero, Dec 02 2014
a(k) = MagicNKZ(3,k,7) where MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n+1-z,j)*(k-j+1)^n. (Cf. A101104.) - Danny Rorabaugh, Apr 23 2015

Extensions

Edited by Ralf Stephan, Dec 16 2004

A101097 a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(2 + 4*n + n^2)/840.

Original entry on oeis.org

1, 12, 69, 272, 846, 2232, 5214, 11088, 21879, 40612, 71643, 121056, 197132, 310896, 476748, 713184, 1043613, 1497276, 2110273, 2926704, 3999930, 5393960, 7184970, 9462960, 12333555, 15919956, 20365047, 25833664, 32515032, 40625376, 50410712
Offset: 1

Views

Author

Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004

Keywords

Comments

Fourth partial sums of cubes (A000578). Partial sums of A101094.

Crossrefs

Programs

Formula

a(n) = n*(n+1)*(n+2)*(n+3)*...*(n+k)*(n*(n+k) + (k-1)*k/6)/((k+3)!/6) for k=4. - Alexander R. Povolotsky, May 17 2008
G.f.: x*(1 + 4*x + x^2)/(1-x)^8. - R. J. Mathar, Jun 13 2008
a(n) = Sum_{k=1..n} A000217(k)^2*A000217(n-k+1). - Bruno Berselli, Sep 04 2013
E.g.f.: x*(840 + 4200*x + 5040*x^2 + 2240*x^3 + 427*x^4 + 35*x^5 + x^6) *exp(x)/840. - G. C. Greubel, Dec 01 2018

Extensions

Edited by Ralf Stephan, Dec 16 2004

A101102 Fifth partial sums of cubes (A000578).

Original entry on oeis.org

1, 13, 82, 354, 1200, 3432, 8646, 19734, 41613, 82225, 153868, 274924, 472056, 782952, 1259700, 1972884, 3016497, 4513773, 6624046, 9550750, 13550680, 18944640, 26129610, 35592570, 47926125, 63846081, 84211128, 110044792, 142559824, 183185200, 233595912
Offset: 1

Author

Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004

Keywords

Crossrefs

Partial sums of A101097.

Programs

  • Magma
    [Binomial(n+5,6)*(3*n^2+15*n+10)/28: n in [1..30]]; // G. C. Greubel, Dec 01 2018
    
  • Mathematica
    Table[Binomial[n+5,6]*(3*n^2+15*n+10)/28, {n,1,30}] (* G. C. Greubel, Dec 01 2018 *)
    Nest[Accumulate,Range[40]^3,5] (* Harvey P. Dale, Feb 06 2023 *)
  • PARI
    a(n)=sum(t=1,n,sum(s=1,t,sum(l=1,s,sum(j=1,l, sum(m=1, j, sum(i=m*(m+1)/2-m+1, m*(m+1)/2,(2*i-1))))))) \\ Alexander R. Povolotsky, May 17 2008
    
  • PARI
    Vec(-x*(x^2+4*x+1)/(x-1)^9 + O(x^100)) \\ Colin Barker, Apr 23 2015
    
  • PARI
    a(n) = binomial(n+5,6)*(3*n^2+15*n+10)/28 \\ Charles R Greathouse IV, Apr 23 2015
    
  • Sage
    [binomial(n+5,6)*(3*n^2+15*n+10)/28 for n in  (1..30)] # G. C. Greubel, Dec 01 2018

Formula

a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(10 + 3*n*(n+5))/20160.
This sequence could be obtained from the general formula a(n) = n*(n+1)*(n+2)*(n+3)*...*(n+k)*(n*(n+k) + (k-1)*k/6)/((k+3)!/6) at k=5. - Alexander R. Povolotsky, May 17 2008
G.f.: x*(x^2+4*x+1) / (1-x)^9. - Colin Barker, Apr 23 2015
Sum_{n>=1} 1/a(n) = -162*sqrt(21/5)*Pi*tan(sqrt(35/3)*Pi/2) - 136269/100. - Amiram Eldar, Jan 26 2022

Extensions

Edited by Ralf Stephan, Dec 16 2004

A087107 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of tetrahedral numbers. The p-th row (p>=1) contains a(i,p) for i=1 to 3*p-2, where a(i,p) satisfies Sum_{i=1..n} C(i+2,3)^p = 4 * C(n+3,4) * Sum_{i=1..3*p-2} a(i,p) * C(n-1,i-1)/(i+3).

Original entry on oeis.org

1, 1, 3, 3, 1, 1, 15, 69, 147, 162, 90, 20, 1, 63, 873, 5191, 16620, 31560, 36750, 25830, 10080, 1680, 1, 255, 9489, 130767, 919602, 3832650, 10238000, 18244380, 21990360, 17745000, 9198000, 2772000, 369600, 1, 1023, 97953, 2903071, 40317780
Offset: 1

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

Let s_n denote the sequence (1, 4^n, 10^n, 20^n, ...) regarded as an infinite column vector, where 1, 4, 10, 20, ... is the sequence of tetrahedral numbers A000292. It appears that the n-th row of this table is determined by the matrix product P^(-1)s_n, where P denotes Pascal's triangle A007318. - Peter Bala, Nov 26 2017
From Peter Bala, Mar 11 2018: (Start)
The observation above is correct.
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+3,3)^p of degree 3*p in terms of falling factorials: C(x+3,3)^p = Sum_{k = 0..3*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+3,3)^p = Sum_{k = 0..3*p} T(p,k)*C(n,k+1).
The sum of the p-th powers of the tetrahedral numbers is also given by Sum_{i = 0..n-1} C(i+3,3)^p = Sum_{k = 3..3*p} A299041(p,k)*C(n+3,k+1) for p >= 1. (End)

Examples

			Row 3 contains 1,15,69,147,162,90,20, so Sum_{i=1..n} C(i+2,3)^3 = 4 * C(n+3,4) * [ a(1,3)/4 + a(2,3)*C(n-1,1)/5 + a(3,3)*C(n-1,2)/6 + ... + a(7,3)*C(n-1,6)/10 ] = 4 * C(n+3,4) * [ 1/4 + 15*C(n-1,1)/5 + 69*C(n-1,2)/6 + 147*C(n-1,3)/7 + 162*C(n-1,4)/8 + 90*C(n-1,5)/9 + 20*C(n-1,6)/10 ]. Cf. A086021 for more details.
From _Peter Bala_, Mar 11 2018: (Start)
Table begins
n=0 | 1
n=1 | 1  3   3    1
n=2 | 1 15  69  147   162    90    20
n=3 | 1 63 873 5191 16620 31560 36750 25830 10080 1680
...
Row 2: C(i+3,3)^2 = C(i,0) + 15*C(i,1) + 69*C(i,2) + 147*C(i,3) + 162*C(i,4) + 90*C(i,5) + 20*C(i,6). Hence, Sum_{i = 0..n-1} C(i+3,3)^2 =  C(n,1) + 15*C(n,2) + 69*C(n,3) + 147*C(n,4) + 162*C(n,5) + 90*C(n,6) + 20*C(n,7). (End)
		

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+3, 3)^n, i= 0..k), k = 0..3*n), n = 0..8); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 4, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 3, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 3*p - 2}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 4, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 3, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 3*p-2, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+4, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+3, i-2*k)^(p-1) ].
From Peter Bala, Nov 26 2017: (Start)
Conjectural formula for table entries: T(n,k) = Sum_{j = 0..k} (-1)^(k+j)*binomial(k,j)*binomial(j+3,3)^n.
Conjecturally, the n-th row polynomial R(n,x) = 1/(1 + x)*Sum_{i >= 0} binomial(i+3,3)^n *(x/(1 + x))^n. (End)
From Peter Bala, Mar 11 2018: (Start)
The conjectures above are correct.
The following remarks assume the row and column indices start at 0.
T(n+1,k) = C(k+3,3)*T(n,k) + 3*C(k+2,3)*T(n,k-1) + 3*C(k+1,3)*T(n,k-2) + C(k,3)*T(n,k-3) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 3*n.
Sum_{k = 0..3*n} T(n,k)*binomial(x,k) = (binomial(x+3,3))^n.
x^3*R(n,x) = (1 + x)^3 * the n-th row polynomial of A299041.
R(n+1,x) = 1/3!*(1 + x)^3*(d/dx)^3 (x^3*R(n,x)).
(1 - x)^(3*n)*R(n,x/(1 - x)) gives the n-th row polynomial of A174266.
R(n,x) = (1 + x)^3 o (1 + x)^3 o ... o (1 + x)^3 (n factors), where o denotes the black diamond product of power series defined in Dukes and White. Note the polynomial x^3 o ... o x^3 (n factors) is the n-th row polynomial of A299041. (End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A087111 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,7). The p-th row (p>=1) contains a(i,p) for i=1 to 7*p-6, where a(i,p) satisfies Sum_{i=1..n} C(i+6,7)^p = 8 * C(n+7,8) * Sum_{i=1..7*p-6} a(i,p) * C(n-1,i-1)/(i+7).

Original entry on oeis.org

1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 63, 1169, 10703, 58821, 214123, 545629, 1004307, 1356194, 1347318, 974862, 500346, 172788, 36036, 3432, 1, 511, 45633, 1589567, 29302889, 333924087, 2577462937, 14287393351, 59159005164, 188008120188
Offset: 1

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

From Peter Bala, Mar 11 2018: (Start)
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+7,7)^p of degree 7*p in terms of falling factorials: C(x+7,7)^p = Sum_{k = 0..7*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+7,7)^p = Sum_{k = 0..7*p} T(p,k)*C(n,k+1). (End)

Examples

			Row 3 contains 1,63,1169,...,3432, so Sum_{i=1..n} C(i+6,7)^3 = 8 * C(n+7,8) * [ a(1,3)/8 + a(2,3)*C(n-1,1)/9 + a(3,3)*C(n-1,2)/10 + ... + a(15,3)*C(n-1,14)/22 ] = 8 * C(n+7,8) * [ 1/8 + 63*C(n-1,1)/9 + 1169*C(n-1,2)/10 + ... + 3432*C(n-1,14)/22 ]. Cf. A086030 for more details.
		

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+7, 7)^n, i = 0..k), k = 0..7*n), n = 0..4); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 8, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 7, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 7*p - 6}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 8, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 7, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 7*p-6, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+8, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+7, i-2*k)^(p-1) ]
From Peter Bala, Mar 11 2018: (Start)
The following remarks assume the row and column indices start at 0.
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * binomial(i+7,7)^n. Equivalently, let v_n denote the sequence (1, 8^n, 36^n, 120^n, ...) regarded as an infinite column vector, where 1, 8, 36, 120, ... is the sequence binomial(n+7,7) - see A000580. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318.
Recurrence: T(n+1,k) = Sum_{i = 0..7} C(7,i)*C(k+7-i,7)*T(n,k-i) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 7*n.
n-th row polynomial R(n,x) = (1 + x)^7 o (1 + x)^7 o ... o (1 + x)^7 (n factors), where o denotes the black diamond product of power series defined in Dukes and White.
R(n+1,x) = 1/7!*(1 + x)^7 * (d/dx)^7(x^7*R(n,x)).
R(n,x) = Sum_{i >= 0} binomial(i+7,7)^n*x^i/(1 + x)^(i+1).
(End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A087108 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,4). The p-th row (p>=1) contains a(i,p) for i=1 to 4*p-3, where a(i,p) satisfies Sum_{i=1..n} C(i+3,4)^p = 5 * C(n+4,5) * Sum_{i=1..4*p-3} a(i,p) * C(n-1,i-1)/(i+4).

Original entry on oeis.org

1, 1, 4, 6, 4, 1, 1, 24, 176, 624, 1251, 1500, 1070, 420, 70, 1, 124, 3126, 33124, 191251, 681000, 1596120, 2543520, 2780820, 2058000, 987000, 277200, 34650, 1, 624, 49376, 1350624, 18308751, 146500500, 763418870, 2749648020, 7101675070, 13440210000
Offset: 1

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

From Peter Bala, Mar 11 2018: (Start)
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+4,4)^p of degree 4*p in terms of falling factorials: C(x+4,4)^p = Sum_{k = 0..4*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+4,4)^p = Sum_{k = 0..4*p} T(p,k)*C(n,k+1). (End)

Examples

			Row 3 contains 1,24,176,...,70, so Sum_{i=1..n} C(i+3,4)^3 = 5 * C(n+4,5) * [ a(1,3)/5 + a(2,3)*C(n-1,1)/6 + a(3,3)*C(n-1,2)/7 + ... + a(9,3)*C(n-1,8)/13 ] = 5 * C(n+4,5) * [ 1/5 + 24*C(n-1,1)/6 + 176*C(n-1,2)/7 + ... + 70*C(n-1,8)/13 ]. Cf. A086024 for more details.
From _Peter Bala_, Mar 11 2018: (Start)
Table begins
  n = 0 | 1
  n = 1 | 1   4    6     4      1
  n = 2 | 1  24  176   624   1251   1500    1070  420  70
  n = 3 | 1 124 3126 33124 191251 681000 1596120 ...
  ...
Row 2: C(i+4,4)^2 = C(i,0) + 24*C(i,1) + 176*C(i,2) + 624*C(i,3) + 1251*C(i,4) + 1500*C(i,5) + 1070*C(i,6) + 420*C(i,7) + 70*C(i,8). Hence, Sum_{i = 0..n-1} C(i+4,4)^2 =  C(n,1) + 24*C(n,2) + 176*C(n,3) + 624*C(n,4) + 1251*C(n,5) + 1500*C(n,6) + 1070*C(n,7) + 420*C(n,8) + 70*C(n,9) .(End)
		

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+4, 4)^n, i = 0..k), k = 0..4*n), n = 0..6); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 5, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 4, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 4*p - 3}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 5, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 4, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 4*p-3, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+5, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+4, i-2*k)^(p-1) ]
From Peter Bala, Mar 11 2018: (Start)
The following remarks assume the row and column indices start at 0.
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * binomial(i+4,4)^n. Equivalently, let v_n denote the sequence (1, 5^n, 15^n, 35^n, ...) regarded as an infinite column vector, where 1, 5, 15, 35, ... is the sequence binomial(n+4,4) - see A000332. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318.
Recurrence: T(n+1,k) = C(k+4,4)*T(n,k) + 4*C(k+3,4)*T(n,k-1) + 6*C(k+2,4)*T(n,k-2) + 4*C(k+1,4)*T(n,k-3) + C(k,4)*T(n,k-4) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 4*n.
n-th row polynomial R(n,x) = (1 + x)^4 o (1 + x)^4 o ... o (1 + x)^4 (n factors), where o denotes the black diamond product of power series defined in Dukes and White.
R(n,x) = Sum_{i >= 0} binomial(i+4,4)^n*x^i/(1 + x)^(i+1).
R(n+1,x) = 1/4! * (1 + x)^4 * (d/dx)^4(x^4*R(n,x)).
(1 - x)^(4*n)*R(n,x/(1 - x)) appears to equal the n-th row polynomial of A236463. (End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A087109 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,5). The p-th row (p>=1) contains a(i,p) for i=1 to 5*p-4, where a(i,p) satisfies Sum_{i=1..n} C(i+4,5)^p = 6 * C(n+5,6) * Sum_{i=1..5*p-4} a(i,p) * C(n-1,i-1)/(i+5).

Original entry on oeis.org

1, 1, 5, 10, 10, 5, 1, 1, 35, 370, 1920, 5835, 11253, 14240, 11830, 6230, 1890, 252, 1, 215, 8830, 148480, 1352615, 7665757, 29224020, 78518790, 152794740, 218270220, 229279512, 175227360, 94864770, 34504470, 7567560, 756756, 1, 1295, 191890
Offset: 1

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

From Peter Bala, Mar 11 2018: (Start)
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+5,5)^p of degree 5*p in terms of falling factorials: C(x+5,5)^p = Sum_{k = 0..5*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+5,5)^p = Sum_{k = 0..5*p} T(p,k)*C(n,k+1). (End)

Examples

			Row 3 contains 1,35,370,...,252, so Sum_{i=1..n} C(i+4,5)^3 = 6 * C(n+5,6) * [ a(1,3)/6 + a(2,3)*C(n-1,1)/7 + a(3,3)*C(n-1,2)/8 + ... + a(11,3)*C(n-1,10)/16 ] = 6 * C(n+5,6) * [ 1/6 + 35*C(n-1,1)/7 + 370*C(n-1,2)/8 + ... + 252*C(n-1,10)/16 ]. Cf. A086026 for more details.
From _Peter Bala_, Mar 11 2018: (Start)
Table begins
1
1  5  10   10    5     1
1 35 370 1920 5835 11253 14240 11830 6230 1890 252
...
Row 2: C(i+5,5)^2 = C(i,0) + 35*C(i,1) + 370*C(i,2) + 1920*C(i,3) + 5835*C(i,4) + 11253*C(i,5) + 14240*C(i,6) + 11830*C(i,7) + 6230*C(i,8) + 1890*C(i,9) + 252*C(i,10). Hence, Sum_{i = 0..n-1} C(i+5,5)^2 = C(n,1) + 35*C(n,2) + 370*C(n,3) + 1920*C(n,4) + 5835*C(n,5) + 11253*C(n,6) + 14240*C(n,7) + 11830*C(n,8) + 6230*C(n,9) + 1890*C(n,10) + 252*C(n,11). (End)
		

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+5, 5)^n, i = 0..k), k = 0..5*n), n = 0..5); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 6, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 5, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 5*p - 4}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 6, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 5, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 5*p-4, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+6, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+5, i-2*k)^(p-1) ]
From Peter Bala, Mar 11 2018: (Start)
The following remarks assume the row and column indices start at 0.
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * binomial(i+5,5)^n. Equivalently, let v_n denote the sequence (1, 6^n, 21^n, 56^n, ...) regarded as an infinite column vector, where 1, 6, 21, 56, ... is the sequence binomial(n+5,5) - see A000389. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318.
Recurrence: T(n+1,k) = Sum_{i = 0..5} C(5,i)*C(k+5-i,5)*T(n,k-i) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 5*n.
n-th row polynomial R(n,x) = (1 + x)^5 o (1 + x)^5 o ... o (1 + x)^5 (n factors), where o denotes the black diamond product of power series defined in Dukes and White.
R(n+1,x) = 1/5!*(1 + x)^5 * (d/dx)^5(x^5*R(n,x)).
R(n,x) = Sum_{i >= 0} binomial(i+5,5)^n*x^i/(1 + x)^(i+1).
(1 - x)^(5*n)*R(n,x/(1 - x)) appears to equal the n-th row polynomial of A237202. (End)

Extensions

Edited by Dean Hickerson, Aug 16 2003
Previous Showing 21-30 of 51 results. Next