Original entry on oeis.org
1, -1, 2, 2, -3, 6, -6, 8, -12, 24, 24, -30, 40, -60, 120, -120, 144, -180, 240, -360, 720, 720, -840, 1008, -1260, 1680, -2520, 5040, -5040, 5760, -6720, 8064, -10080, 13440, -20160, 40320, 40320, -45360, 51840, -60480, 72576, -90720, 120960, -181440, 362880, -362880, 403200, -453600, 518400, -604800, 725760, -907200, 1209600, -1814400, 3628800
Offset: 1
Triangle starts:
1
-1, 2
2, -3, 6
-6, 8, -12, 24
24, -30, 40, -60, 120
-120, 144, -180, 240, -360, 720
720, -840, 1008, -1260, 1680, -2520, 5040
...
-
Table[Table[ -(-1)^(n-k+1) n/(n-k+1), {k, 1, n}] (n-1)!, {n, 1, 12}]
A087301
a(n) = n!*Sum_{i=1..n-1} (-1)^(i+1)/i.
Original entry on oeis.org
2, 3, 20, 70, 564, 3108, 30624, 230256, 2705760, 25771680, 352805760, 4067556480, 63651813120, 861371884800, 15176802816000, 235775183616000, 4620563523072000, 81032645804544000, 1748700390205440000
Offset: 2
-
Rest[Table[n!Sum[(-1)^(i+1)/i,{i,n-1}],{n,20}]] (* Harvey P. Dale, Oct 24 2011 *)
-
a(n)=if(n<0,0,n!*polcoeff(log(1+x+x*O(x^n))*x/(1-x),n))
A346943
a(n) = a(n-1) + n*(n+1)*a(n-2) with a(0)=1, a(1)=1.
Original entry on oeis.org
1, 1, 7, 19, 159, 729, 7407, 48231, 581535, 4922325, 68891175, 718638075, 11465661375, 142257791025, 2550046679775, 36691916525775, 730304613424575, 11958031070311725, 261722208861516375, 4805774015579971875, 114729101737416849375, 2334996696935363855625
Offset: 0
-
RecurrenceTable[{a[n] == a[n-1] + n*(n+1)*a[n-2], a[0]==1, a[1]==1}, a, {n,0,20}]
nmax = 20; CoefficientList[Series[(-2 + Pi + 2*Pi*x + 4*Sqrt[1 - x^2] + 2*x*(-2 + Sqrt[1 - x^2]) - 4*(1 + 2*x) * ArcSin[Sqrt[1 - x]/Sqrt[2]]) / (2*(1 - x)^(5/2) * (1 + x)^(3/2)), {x, 0, nmax}], x] * Range[0, nmax]!
A371685
Triangle read by rows: T(n, k) = n! * Sum_{j=0..n-1} binomial(k - 1, j) / (j + 1).
Original entry on oeis.org
0, 1, 1, 1, 2, 3, 5, 6, 9, 14, 14, 24, 36, 56, 90, 94, 120, 180, 280, 450, 744, 444, 720, 1080, 1680, 2700, 4464, 7560, 3828, 5040, 7560, 11760, 18900, 31248, 52920, 91440, 25584, 40320, 60480, 94080, 151200, 249984, 423360, 731520, 1285200
Offset: 0
Triangle starts:
[0] 0;
[1] 1, 1;
[2] 1, 2, 3;
[3] 5, 6, 9, 14;
[4] 14, 24, 36, 56, 90;
[5] 94, 120, 180, 280, 450, 744;
[6] 444, 720, 1080, 1680, 2700, 4464, 7560;
[7] 3828, 5040, 7560, 11760, 18900, 31248, 52920, 91440;
-
T := (n, k) -> local j; n!*add(binomial(k-1, j)/(j + 1), j = 0..n-1):
T := (n, k) -> local j; n!*ifelse(n = 0, 0, ifelse(k=0, add(-(-1)^j/j, j = 1..n), (2^k - 1) / k)):
seq(print(seq(T(n, k), k = 0..n)), n = 0..7);
A302582
a(n) = n! * [x^n] log(1 + x)/(1 - x)^n.
Original entry on oeis.org
0, 1, 3, 29, 386, 6774, 146484, 3762744, 111868560, 3777096240, 142734788640, 5967788097600, 273488036169600, 13631083378617600, 734083968523046400, 42477063883483622400, 2628184745184816384000, 173147202267665649408000, 12100888735302910523904000, 894183767796064712795136000
Offset: 0
-
Table[n! SeriesCoefficient[Log[1 + x]/(1 - x)^n, {x, 0, n}], {n, 0, 19}]
Table[n! Sum[(-1)^(k + 1) Binomial[2 n - k - 1, n - k]/k, {k, 1, n}], {n, 0, 19}]
Join[{0}, Table[n^2 (2 (n - 1))! HypergeometricPFQ[{1, 1, 1 - n}, {2, 2 - 2 n}, -1]/n!, {n, 19}]]
A336250
a(n) = (n!)^n * Sum_{k=1..n} (-1)^(k+1) / k^n.
Original entry on oeis.org
0, 1, 3, 197, 313840, 24191662624, 137300308036448256, 81994640912971156525105152, 6958651785463110878359050928999366656, 108902755985567407887534498777329973193771818418176, 395560567918154447056086270973712023435510589158871531520000000000
Offset: 0
-
Table[(n!)^n Sum[(-1)^(k + 1)/k^n, {k, 1, n}], {n, 0, 10}]
Table[(n!)^n SeriesCoefficient[-PolyLog[n, -x]/(1 - x), {x, 0, n}], {n, 0, 10}]
-
a(n) = (n!)^n * sum(k=1, n, (-1)^(k+1) / k^n); \\ Michel Marcus, Jul 14 2020
A347978
E.g.f.: 1/(1 + x)^(1/(1 - x)).
Original entry on oeis.org
1, -1, 0, -3, 4, -30, 186, -630, 11600, -26712, 1005480, -2581920, 117196872, -485308824, 17734457664, -131070696120, 3387342915840, -43890398953920, 801577841697216, -17363169328243392, 233460174245351040, -7968629225100337920, 84363134551361043840
Offset: 0
-
nmax = 22; CoefficientList[Series[1/(1 + x)^(1/(1 - x)), {x, 0, nmax}], x] Range[0, nmax]!
A024167[n_] := n! Sum[(-1)^(k + 1)/k, {k, 1, n}]; a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n - 1, k - 1] A024167[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
-
my(x='x+O('x^30)); Vec(serlaplace(1/(1+x)^(1/(1-x)))) \\ Michel Marcus, Sep 22 2021
Comments