A096648
Number of partitions of an n-set with odd number of even blocks.
Original entry on oeis.org
0, 1, 3, 7, 25, 106, 434, 2045, 10707, 57781, 338195, 2115664, 13796952, 95394573, 692462671, 5235101739, 41436754261, 341177640610, 2915100624274, 25866987547865, 237448494222575, 2252995117706961, 22078799199129799, 222971522853648704, 2319210969809731600
Offset: 1
-
with(combinat):
b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1,
0, add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1,
irem(t+`if`(irem(i, 2)=0, j, 0), 2)), j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=1..30); # Alois P. Heinz, Mar 08 2015
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n-i*j, i-1, Mod[t+If[Mod[i, 2] == 0, j, 0], 2]], {j, 0, n/i}]]]; a[n_] := b[n, n, 2]; Table[ a[n], {n, 1, 30}] (* Jean-François Alcover, May 13 2015, after Alois P. Heinz *)
With[{nn=30},Rest[CoefficientList[Series[Exp[Sinh[x]]Sinh[Cosh[x]-1], {x,0,nn}],x] Range[0,nn]!]] (* Harvey P. Dale, Sep 03 2016 *)
A121870
Monthly Problem 10791, second expression.
Original entry on oeis.org
1, 1, 2, 9, 61, 554, 6565, 96677, 1716730, 36072181, 881242577, 24674241834, 783024550969, 27896201305769, 1106485798248706, 48517267642373105, 2337333266369553253, 123040664089658462650, 7043260281573138384701, 436533086101058798529933
Offset: 0
-
List([0..25], n-> (Sum([0..Int(n/2)], k-> Stirling2(n,2*k)*(-1)^(k)) )^2 + (Sum([0..Int(n/2)], k-> (-1)^k*Stirling2(n,2*k+1)))^2 ); # G. C. Greubel, Oct 08 2019
-
C:= ComplexField(); a:= func< n | Round(Abs( (&+[I^k*StirlingSecond(n,k): k in [0..n]])^2 )) >;
[a(n): n in [0..25]]; // G. C. Greubel, Oct 08 2019
-
A121870a:= proc(a) local i, t:
i:=1: t:=0: for i to 100 do t:=t+evalf((i^(a-1))*(I)^i/(i)!): od:
RETURN(round(abs(t^2))):
end: a:= A121870a(n);
# Russell Walsmith, Apr 18 2008
# Alternate:
seq(abs(BellB(n,I))^2, n=0..30); # Robert Israel, Oct 15 2017
-
Table[Abs[BellB[n, I]]^2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2017 *)
-
a(n) = abs( (sum(k=0,n, I^k*stirling(n,k,2)))^2 );
vector(25, n, a(n-1)) \\ G. C. Greubel, Oct 08 2019
-
[abs( sum(I^k*stirling_number2(n,k) for k in (0..n))^2 ) for n in (0..25)] # G. C. Greubel, Oct 08 2019
A330021
Expansion of e.g.f. exp(sinh(exp(x) - 1)).
Original entry on oeis.org
1, 1, 2, 6, 25, 128, 754, 5001, 37048, 303930, 2732395, 26657106, 280039786, 3149224991, 37729906686, 479570263690, 6442902231289, 91186621152460, 1355582225366134, 21112253012491481, 343672026658191836, 5834977672879651390, 103130592695715620419
Offset: 0
-
g:= proc(n) option remember; `if`(n=0, 1, add(
binomial(n-1, j-1)*irem(j, 2)*g(n-j), j=1..n))
end:
b:= proc(n, m) option remember; `if`(n=0,
g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..22); # Alois P. Heinz, Jun 23 2023
-
nmax = 22; CoefficientList[Series[Exp[Sinh[Exp[x] - 1]], {x, 0, nmax}], x] Range[0, nmax]!
A346634
Number of strict odd-length integer partitions of 2n + 1.
Original entry on oeis.org
1, 1, 1, 2, 4, 6, 9, 14, 19, 27, 38, 52, 71, 96, 128, 170, 224, 293, 380, 491, 630, 805, 1024, 1295, 1632, 2048, 2560, 3189, 3958, 4896, 6038, 7424, 9100, 11125, 13565, 16496, 20013, 24223, 29250, 35244, 42378, 50849, 60896, 72789, 86841, 103424, 122960, 145937
Offset: 0
The a(0) = 1 through a(7) = 14 partitions:
(1) (3) (5) (7) (9) (11) (13) (15)
(4,2,1) (4,3,2) (5,4,2) (6,4,3) (6,5,4)
(5,3,1) (6,3,2) (6,5,2) (7,5,3)
(6,2,1) (6,4,1) (7,4,2) (7,6,2)
(7,3,1) (7,5,1) (8,4,3)
(8,2,1) (8,3,2) (8,5,2)
(8,4,1) (8,6,1)
(9,3,1) (9,4,2)
(10,2,1) (9,5,1)
(10,3,2)
(10,4,1)
(11,3,1)
(12,2,1)
(5,4,3,2,1)
The even version is the even bisection of
A067661.
The case of all odd parts is counted by
A069911 (non-strict:
A078408).
A340385 counts partitions with odd length and maximum, ranked by
A340386.
Other cases of odd length:
-
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
end:
a:= n-> b(2*n+1$2, 0):
seq(a(n), n=0..80); # Alois P. Heinz, Aug 05 2021
-
Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&OddQ[Length[#]]&]],{n,0,15}]
A357668
Expansion of e.g.f. sinh( 3 * (exp(x) - 1) )/3.
Original entry on oeis.org
0, 1, 1, 10, 55, 307, 2026, 14779, 114157, 933616, 8110261, 74525167, 719925328, 7279859485, 76855303981, 845280487018, 9663800287483, 114601481983855, 1407040763488354, 17856103120048783, 233883061849700137, 3157648445216335528, 43887908697233605489
Offset: 0
-
my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sinh(3*(exp(x)-1))/3)))
-
a(n) = sum(k=0, (n-1)\2, 9^k*stirling(n, 2*k+1, 2));
-
Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = round((Bell_poly(n, 3)-Bell_poly(n, -3)))/6;
A296543
Expansion of e.g.f. tanh(exp(x)-1).
Original entry on oeis.org
0, 1, 1, -1, -11, -33, 61, 1367, 7253, -12561, -580499, -4701497, 4669765, 580325215, 6636339165, 1365901495, -1122870368715, -17289945450289, -31110588453299, 3713822629274023, 74717183313957413, 280555705771423039, -19253195126787261507, -496715617694137066089, -3008746115751273626347
Offset: 0
tanh(exp(x)-1) = x/1! + x^2/2! - x^3/3! - 11*x^4/4! - 33*x^5/5! + 61*x^6/6! + 1367*x^7/7! + ...
-
a:=series(tanh(exp(x)-1),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 27 2019
-
nmax = 24; CoefficientList[Series[Tanh[Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 24; CoefficientList[Series[Sinh[Exp[x] - 1]/Cosh[Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 24; CoefficientList[Series[(Exp[x] - 1)/(1 + ContinuedFractionK[(Exp[x] - 1)^2, 2 k - 1, {k, 2, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
A296545
Expansion of e.g.f. arcsinh(exp(x)-1).
Original entry on oeis.org
0, 1, 1, 0, -5, -15, 46, 735, 2185, -33390, -453479, -364155, 57806200, 681966285, -3289884779, -197798065920, -1815938249585, 33917006295885, 1155429901407646, 5691720408045315, -408736165211351795, -10271257189100959590, 23948813753053818421, 6626731340918542069425, 124356774945741129842320
Offset: 0
arcsinh(exp(x)-1) = x/1! + x^2/2! - 5*x^4/4! - 15*x^5/5! + 46*x^6/6! + 735*x^7/7! + ...
-
S:= series(arcsinh(exp(x)-1),x,41):
seq(coeff(S,x,j)*j!,j=0..40); # Robert Israel, Dec 17 2017
-
nmax = 24; CoefficientList[Series[ArcSinh[Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 24; CoefficientList[Series[-Log[1 - Exp[x] + Sqrt[1 + (1 - Exp[x])^2]], {x, 0, nmax}], x] Range[0, nmax]!
A341448
Heinz numbers of integer partitions of type OO.
Original entry on oeis.org
6, 14, 15, 24, 26, 33, 35, 38, 51, 54, 56, 58, 60, 65, 69, 74, 77, 86, 93, 95, 96, 104, 106, 119, 122, 123, 126, 132, 135, 140, 141, 142, 143, 145, 150, 152, 158, 161, 177, 178, 185, 201, 202, 204, 209, 214, 215, 216, 217, 219, 221, 224, 226, 232, 234, 240
Offset: 1
The sequence of partitions together with their Heinz numbers begins:
6: (2,1) 74: (12,1) 141: (15,2)
14: (4,1) 77: (5,4) 142: (20,1)
15: (3,2) 86: (14,1) 143: (6,5)
24: (2,1,1,1) 93: (11,2) 145: (10,3)
26: (6,1) 95: (8,3) 150: (3,3,2,1)
33: (5,2) 96: (2,1,1,1,1,1) 152: (8,1,1,1)
35: (4,3) 104: (6,1,1,1) 158: (22,1)
38: (8,1) 106: (16,1) 161: (9,4)
51: (7,2) 119: (7,4) 177: (17,2)
54: (2,2,2,1) 122: (18,1) 178: (24,1)
56: (4,1,1,1) 123: (13,2) 185: (12,3)
58: (10,1) 126: (4,2,2,1) 201: (19,2)
60: (3,2,1,1) 132: (5,2,1,1) 202: (26,1)
65: (6,3) 135: (3,2,2,2) 204: (7,2,1,1)
69: (9,2) 140: (4,3,1,1) 209: (8,5)
Note: A-numbers of ranking sequences are in parentheses below.
The case of odd parts, length, and sum is counted by
A078408 (
A300272).
These partitions (for odd n) are counted by
A236914.
A340101 counts factorizations into odd factors.
Cf.
A000700,
A024429,
A027187,
A106529,
A117409,
A174725,
A257541,
A325134,
A339890,
A340102,
A340604.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[Count[primeMS[#],?EvenQ]]&&OddQ[Count[primeMS[#],?OddQ]]&]
Comments