cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A096648 Number of partitions of an n-set with odd number of even blocks.

Original entry on oeis.org

0, 1, 3, 7, 25, 106, 434, 2045, 10707, 57781, 338195, 2115664, 13796952, 95394573, 692462671, 5235101739, 41436754261, 341177640610, 2915100624274, 25866987547865, 237448494222575, 2252995117706961, 22078799199129799, 222971522853648704, 2319210969809731600
Offset: 1

Views

Author

Vladeta Jovovic, Aug 14 2004

Keywords

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1,
          0, add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1,
          irem(t+`if`(irem(i, 2)=0, j, 0), 2)), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=1..30);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n-i*j, i-1, Mod[t+If[Mod[i, 2] == 0, j, 0], 2]], {j, 0, n/i}]]]; a[n_] := b[n, n, 2]; Table[ a[n], {n, 1, 30}] (* Jean-François Alcover, May 13 2015, after Alois P. Heinz *)
    With[{nn=30},Rest[CoefficientList[Series[Exp[Sinh[x]]Sinh[Cosh[x]-1], {x,0,nn}],x] Range[0,nn]!]] (* Harvey P. Dale, Sep 03 2016 *)

Formula

E.g.f.: exp(sinh(x))*sinh(cosh(x)-1).
a(2*n) = A024429(2*n) and a(2*n+1) = A024430(2*n+1). - Jonathan Vos Post, Oct 19 2005
a(n) = sum{k=0..n, if(mod(n-k,2)=1, A048993(n,k), 0)}. - Paul Barry, May 19 2006

Extensions

More terms from Emeric Deutsch, Nov 16 2004

A121870 Monthly Problem 10791, second expression.

Original entry on oeis.org

1, 1, 2, 9, 61, 554, 6565, 96677, 1716730, 36072181, 881242577, 24674241834, 783024550969, 27896201305769, 1106485798248706, 48517267642373105, 2337333266369553253, 123040664089658462650, 7043260281573138384701, 436533086101058798529933
Offset: 0

Views

Author

N. J. A. Sloane, Sep 05 2006

Keywords

Crossrefs

Programs

  • GAP
    List([0..25], n-> (Sum([0..Int(n/2)], k-> Stirling2(n,2*k)*(-1)^(k)) )^2 + (Sum([0..Int(n/2)], k-> (-1)^k*Stirling2(n,2*k+1)))^2 ); # G. C. Greubel, Oct 08 2019
  • Magma
    C:= ComplexField(); a:= func< n | Round(Abs( (&+[I^k*StirlingSecond(n,k): k in [0..n]])^2 )) >;
    [a(n): n in [0..25]]; // G. C. Greubel, Oct 08 2019
    
  • Maple
    A121870a:= proc(a) local i, t:
    i:=1: t:=0: for i to 100 do t:=t+evalf((i^(a-1))*(I)^i/(i)!): od:
    RETURN(round(abs(t^2))):
    end: a:= A121870a(n);
    # Russell Walsmith, Apr 18 2008
    # Alternate:
    seq(abs(BellB(n,I))^2, n=0..30); # Robert Israel, Oct 15 2017
  • Mathematica
    Table[Abs[BellB[n, I]]^2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2017 *)
  • PARI
    a(n) = abs( (sum(k=0,n, I^k*stirling(n,k,2)))^2 );
    vector(25, n, a(n-1)) \\ G. C. Greubel, Oct 08 2019
    
  • Sage
    [abs( sum(I^k*stirling_number2(n,k) for k in (0..n))^2 ) for n in (0..25)] # G. C. Greubel, Oct 08 2019
    

Formula

a(n) = A121867(n)^2 + A121868(n)^2.
From Gary W. Adamson, Jul 22 2011: (Start)
sqrt(a(n)) = upper left term in M^n as to the modulus of a polar term; M = an infinite square production matrix in which a column of (i, i, i, ...) is appended to the right of Pascal's triangle, as follows (with i = sqrt(-1)):
1, i, 0, 0, 0, ...
1, 1, i, 0, 0, ...
1, 2, 1, i, 0, ...
1, 3, 3, 1, i, ...
... (End)
a(n) = |B_n(i)|^2, where B_n(x) is the n-th Bell polynomial, i = sqrt(-1) is the imaginary unit. - Vladimir Reshetnikov, Oct 15 2017
a(n) ~ (n*exp(-1 + Re(LambertW(i*n)) / Abs(LambertW(i*n))^2) / Abs(LambertW(i*n)))^(2*n) / Abs(1 + LambertW(i*n)), where i is the imaginary unit. - Vaclav Kotesovec, Jul 28 2021

A330021 Expansion of e.g.f. exp(sinh(exp(x) - 1)).

Original entry on oeis.org

1, 1, 2, 6, 25, 128, 754, 5001, 37048, 303930, 2732395, 26657106, 280039786, 3149224991, 37729906686, 479570263690, 6442902231289, 91186621152460, 1355582225366134, 21112253012491481, 343672026658191836, 5834977672879651390, 103130592695715620419
Offset: 0

Author

Ilya Gutkovskiy, Nov 27 2019

Keywords

Comments

Stirling transform of A003724.
Exponential transform of A024429.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1)*irem(j, 2)*g(n-j), j=1..n))
        end:
    b:= proc(n, m) option remember; `if`(n=0,
          g(m), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..22);  # Alois P. Heinz, Jun 23 2023
  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[Sinh[Exp[x] - 1]], {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * A003724(k).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A024429(k) * a(n-k).

A346634 Number of strict odd-length integer partitions of 2n + 1.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 9, 14, 19, 27, 38, 52, 71, 96, 128, 170, 224, 293, 380, 491, 630, 805, 1024, 1295, 1632, 2048, 2560, 3189, 3958, 4896, 6038, 7424, 9100, 11125, 13565, 16496, 20013, 24223, 29250, 35244, 42378, 50849, 60896, 72789, 86841, 103424, 122960, 145937
Offset: 0

Author

Gus Wiseman, Aug 01 2021

Keywords

Examples

			The a(0) = 1 through a(7) = 14 partitions:
  (1)  (3)  (5)  (7)      (9)      (11)     (13)      (15)
                 (4,2,1)  (4,3,2)  (5,4,2)  (6,4,3)   (6,5,4)
                          (5,3,1)  (6,3,2)  (6,5,2)   (7,5,3)
                          (6,2,1)  (6,4,1)  (7,4,2)   (7,6,2)
                                   (7,3,1)  (7,5,1)   (8,4,3)
                                   (8,2,1)  (8,3,2)   (8,5,2)
                                            (8,4,1)   (8,6,1)
                                            (9,3,1)   (9,4,2)
                                            (10,2,1)  (9,5,1)
                                                      (10,3,2)
                                                      (10,4,1)
                                                      (11,3,1)
                                                      (12,2,1)
                                                      (5,4,3,2,1)
		

Crossrefs

Odd bisection of A067659, which is ranked by A030059.
The even version is the even bisection of A067661.
The case of all odd parts is counted by A069911 (non-strict: A078408).
The non-strict version is A160786, ranked by A340931.
The non-strict even version is A236913, ranked by A340784.
The even-length version is A343942 (non-strict: A236914).
The even-sum version is A344650 (non-strict: A236559 or A344611).
A000009 counts partitions with all odd parts, ranked by A066208.
A000009 counts strict partitions, ranked by A005117.
A027193 counts odd-length partitions, ranked by A026424.
A027193 counts odd-maximum partitions, ranked by A244991.
A058695 counts partitions of odd numbers, ranked by A300063.
A340385 counts partitions with odd length and maximum, ranked by A340386.
Other cases of odd length:
- A024429 set partitions
- A089677 ordered set partitions
- A166444 compositions
- A174726 ordered factorizations
- A332304 strict compositions
- A339890 factorizations

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
         `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
        end:
    a:= n-> b(2*n+1$2, 0):
    seq(a(n), n=0..80);  # Alois P. Heinz, Aug 05 2021
  • Mathematica
    Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&OddQ[Length[#]]&]],{n,0,15}]

Extensions

More terms from Alois P. Heinz, Aug 05 2021

A357668 Expansion of e.g.f. sinh( 3 * (exp(x) - 1) )/3.

Original entry on oeis.org

0, 1, 1, 10, 55, 307, 2026, 14779, 114157, 933616, 8110261, 74525167, 719925328, 7279859485, 76855303981, 845280487018, 9663800287483, 114601481983855, 1407040763488354, 17856103120048783, 233883061849700137, 3157648445216335528, 43887908697233605489
Offset: 0

Author

Seiichi Manyama, Oct 08 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sinh(3*(exp(x)-1))/3)))
    
  • PARI
    a(n) = sum(k=0, (n-1)\2, 9^k*stirling(n, 2*k+1, 2));
    
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    a(n) = round((Bell_poly(n, 3)-Bell_poly(n, -3)))/6;

Formula

a(n) = Sum_{k=0..floor((n-1)/2)} 9^k * Stirling2(n,2*k+1).
a(n) = ( Bell_n(3) - Bell_n(-3) )/6, where Bell_n(x) is n-th Bell polynomial.
a(n) = 0; a(n) = Sum_{k=0..n-1} binomial(n-1, k) * A357667(k).

A296543 Expansion of e.g.f. tanh(exp(x)-1).

Original entry on oeis.org

0, 1, 1, -1, -11, -33, 61, 1367, 7253, -12561, -580499, -4701497, 4669765, 580325215, 6636339165, 1365901495, -1122870368715, -17289945450289, -31110588453299, 3713822629274023, 74717183313957413, 280555705771423039, -19253195126787261507, -496715617694137066089, -3008746115751273626347
Offset: 0

Author

Ilya Gutkovskiy, Dec 15 2017

Keywords

Examples

			tanh(exp(x)-1) = x/1! + x^2/2! - x^3/3! - 11*x^4/4! - 33*x^5/5! + 61*x^6/6! + 1367*x^7/7! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(tanh(exp(x)-1),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 24; CoefficientList[Series[Tanh[Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 24; CoefficientList[Series[Sinh[Exp[x] - 1]/Cosh[Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 24; CoefficientList[Series[(Exp[x] - 1)/(1 + ContinuedFractionK[(Exp[x] - 1)^2, 2 k - 1, {k, 2, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: sinh(exp(x)-1)/cosh(exp(x)-1).
E.g.f.: (exp(x)-1)/(1 + (exp(x)-1)^2/(3 + (exp(x)-1)^2/(5 + (exp(x)-1)^2/(7 + (exp(x)-1)^2/(9 + ...))))), a continued fraction.

A296545 Expansion of e.g.f. arcsinh(exp(x)-1).

Original entry on oeis.org

0, 1, 1, 0, -5, -15, 46, 735, 2185, -33390, -453479, -364155, 57806200, 681966285, -3289884779, -197798065920, -1815938249585, 33917006295885, 1155429901407646, 5691720408045315, -408736165211351795, -10271257189100959590, 23948813753053818421, 6626731340918542069425, 124356774945741129842320
Offset: 0

Author

Ilya Gutkovskiy, Dec 15 2017

Keywords

Examples

			arcsinh(exp(x)-1) = x/1! + x^2/2! - 5*x^4/4! - 15*x^5/5! + 46*x^6/6! + 735*x^7/7! + ...
		

Crossrefs

Programs

  • Maple
    S:= series(arcsinh(exp(x)-1),x,41):
    seq(coeff(S,x,j)*j!,j=0..40); # Robert Israel, Dec 17 2017
  • Mathematica
    nmax = 24; CoefficientList[Series[ArcSinh[Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 24; CoefficientList[Series[-Log[1 - Exp[x] + Sqrt[1 + (1 - Exp[x])^2]], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: -log(1 - exp(x) + sqrt(1 + (1 - exp(x))^2)).

A341448 Heinz numbers of integer partitions of type OO.

Original entry on oeis.org

6, 14, 15, 24, 26, 33, 35, 38, 51, 54, 56, 58, 60, 65, 69, 74, 77, 86, 93, 95, 96, 104, 106, 119, 122, 123, 126, 132, 135, 140, 141, 142, 143, 145, 150, 152, 158, 161, 177, 178, 185, 201, 202, 204, 209, 214, 215, 216, 217, 219, 221, 224, 226, 232, 234, 240
Offset: 1

Author

Gus Wiseman, Feb 15 2021

Keywords

Comments

These partitions are defined to have an odd number of odd parts and an odd number of even parts. They also have even length and odd sum.

Examples

			The sequence of partitions together with their Heinz numbers begins:
      6: (2,1)         74: (12,1)           141: (15,2)
     14: (4,1)         77: (5,4)            142: (20,1)
     15: (3,2)         86: (14,1)           143: (6,5)
     24: (2,1,1,1)     93: (11,2)           145: (10,3)
     26: (6,1)         95: (8,3)            150: (3,3,2,1)
     33: (5,2)         96: (2,1,1,1,1,1)    152: (8,1,1,1)
     35: (4,3)        104: (6,1,1,1)        158: (22,1)
     38: (8,1)        106: (16,1)           161: (9,4)
     51: (7,2)        119: (7,4)            177: (17,2)
     54: (2,2,2,1)    122: (18,1)           178: (24,1)
     56: (4,1,1,1)    123: (13,2)           185: (12,3)
     58: (10,1)       126: (4,2,2,1)        201: (19,2)
     60: (3,2,1,1)    132: (5,2,1,1)        202: (26,1)
     65: (6,3)        135: (3,2,2,2)        204: (7,2,1,1)
     69: (9,2)        140: (4,3,1,1)        209: (8,5)
		

Crossrefs

Note: A-numbers of ranking sequences are in parentheses below.
The case of odd parts, length, and sum is counted by A078408 (A300272).
The type EE version is A236913 (A340784).
These partitions (for odd n) are counted by A236914.
A000009 counts partitions into odd parts (A066208).
A026804 counts partitions whose least part is odd (A340932).
A027193 counts partitions of odd length/maximum (A026424/A244991).
A058695 counts partitions of odd numbers (A300063).
A160786 counts odd-length partitions of odd numbers (A340931).
A340101 counts factorizations into odd factors.
A340385 counts partitions of odd length and maximum (A340386).
A340601 counts partitions of even rank (A340602).
A340692 counts partitions of odd rank (A340603).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[Count[primeMS[#],?EvenQ]]&&OddQ[Count[primeMS[#],?OddQ]]&]
Previous Showing 31-38 of 38 results.