cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 66 results. Next

A369410 Irregular triangle read by rows: row n lists the length of a "normal" proof (see comments) for each of the distinct derivable strings (theorems) in the MIU formal system that are n characters long.

Original entry on oeis.org

1, 4, 4, 2, 13, 13, 8, 13, 8, 8, 11, 11, 6, 11, 6, 6, 11, 6, 6, 6, 3, 12, 12, 18, 12, 18, 18, 12, 18, 18, 18, 12, 12, 18, 18, 18, 12, 18, 12, 12, 12, 7, 10, 10, 16, 10, 16, 16, 10, 16, 16, 16, 10, 10, 16, 16, 16, 10, 16, 10, 10, 10, 5, 10, 16, 16, 16, 10, 16, 10, 10, 10, 5, 16, 10, 10, 10, 5, 10, 10, 5, 10, 5, 5
Offset: 2

Views

Author

Paolo Xausa, Jan 23 2024

Keywords

Comments

See A368946 for the description of the MIU formal system, A369173 for the triangle of the corresponding strings (theorems) and A369409 for the definition of "normal" proof.

Examples

			Triangle begins:
  [2]  1;
  [3]  4  4  2;
  [4] 13 13  8 13  8  8;
  [5] 11 11  6 11  6  6 11  6  6  6  3;
  ...
For the theorem MIU (310), which is given by A369173(3,2), the "normal" proof is MI (31) -> MII (311) -> MIIII (31111) -> MIU (310), which consists of 4 lines: T(3,2) is therefore 4.
		

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262.

Crossrefs

Row lengths of A369409.
Cf. A024495 (row lengths).

Programs

  • Mathematica
    MIUDigitsW3[n_] := Select[Tuples[{0, 1}, n - 1], !Divisible[Count[#, 1], 3]&];
    MIUProofLineCount[t_] := Module[{c = Count[t, 0], ni}, ni = Length[t] + 2*c; While[ni > 1, If[OddQ[ni], ni = (ni+3)/2; c += 4, ni/=2; c++]]; c+1];
    Map[MIUProofLineCount, Array[MIUDigitsW3, 7, 2], {2}]

Formula

T(n,k) >= A369408(n,k).
If A369173(n,k) contains no zeros and 3+2^m ones (for m >= 0), then T(n,k) = 4*m + 3.

A369411 Irregular triangle read by rows: row n lists the number of symbols of a "normal" proof (see comments) for each of the distinct derivable strings (theorems) in the MIU formal system that are n characters long.

Original entry on oeis.org

2, 13, 13, 5, 94, 94, 47, 94, 47, 47, 75, 75, 31, 75, 31, 31, 75, 31, 31, 31, 10, 120, 120, 165, 120, 165, 165, 120, 165, 165, 165, 90, 120, 165, 165, 165, 90, 165, 90, 90, 90, 43, 91, 91, 139, 91, 139, 139, 91, 139, 139, 139, 70, 91, 139, 139, 139, 70, 139, 70
Offset: 2

Views

Author

Paolo Xausa, Jan 23 2024

Keywords

Comments

See A368946 for the description of the MIU formal system, A369173 for the triangle of the corresponding strings (theorems) and A369409 for the definition of "normal" proof.
The number of symbols of a proof is the sum of the number of characters contained in all of the strings (lines) of the proof; cf. Matos and Antunes (1998).

Examples

			Triangle begins:
  [2]  2;
  [3] 13 13  5;
  [4] 94 94 47 94 47 47;
  [5] 75 75 31 75 31 31 75 31 31 31 10;
  ...
For the theorem MIU (310), which is given by A369173(3,2), the "normal" proof is MI (31) -> MII (311) -> MIIII (31111) -> MIU (310), which consists of a total of 13 symbols (counting only M, I and U characters): T(3,2) is therefore 13.
		

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262.

Crossrefs

Cf. A369587 (analog for shortest proofs).
Cf. A024495 (row lengths).

Programs

  • Mathematica
    MIUDigitsW3[n_] := Select[Tuples[{0, 1}, n - 1], !Divisible[Count[#, 1], 3]&];
    MIUProofSymbolCount[t_] := Module[{c = Length[t], nu = Count[t,0], ni}, ni = 2*nu+c; c += nu(nu+c+2); While[ni > 1, If[OddQ[ni], c += (7*ni+3)/2 + 13; ni = (ni+3)/2, c += ni/2 + 1; ni/=2]]; c+1];
    Map[MIUProofSymbolCount, Array[MIUDigitsW3, 7, 2], {2}]

Formula

If A369173(n,k) contains no zeros and 3+2^m ones (for m >= 0), then T(n,k) = 2^(m+3) + 25*m + 2.

A369587 Irregular triangle read by rows: row n lists the number of symbols of the shortest proof (see comments) for each of the distinct derivable strings (theorems) in the MIU formal system that are n characters long.

Original entry on oeis.org

2, 13, 5, 5, 68, 17, 44, 20, 44, 9, 52, 52, 31, 52, 18, 31, 52, 31, 10, 31, 10
Offset: 2

Views

Author

Paolo Xausa, Jan 26 2024

Keywords

Comments

See A368946 for the description of the MIU formal system and A369173 for the triangle of corresponding strings.
Strings are encoded by mapping the characters M, I, and U to 3, 1, and 0, respectively.
In case more than one shortest proof exists, the lexicographically earliest one (after encoding) is chosen.

Examples

			Triangle begins:
  [2]  2;
  [3] 13  5  5;
  [4] 68 17 44 20 44  9;
  [5] 52 52 31 52 18 31 52 31 10 31 10;
  ...
For the theorem MIUU (3100), which is given by A369173(4,4), the shortest proof is MI (31) -> MII (311) -> MIIII (31111) -> MIIIIU (311110) -> MIUU (3100), which consists of a total of 20 symbols (counting only M, I and U characters): T(4,4) is therefore 20.
		

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262.

Crossrefs

Cf. A368946, A369173, A369411 (analog for "normal" proofs).
Cf. A024495 (row lengths), A369408 (number of lines), A369586 (proofs).

Programs

  • Mathematica
    MIUStrings[n_] := Map["3" <> FromCharacterCode[# + 48] &, Select[Tuples[{0, 1}, n - 1], ! Divisible[Count[#, 1], 3] &]];
    MIUNext[s_] := Flatten[{If[StringEndsQ[s, "1"], s <> "0", Nothing], s <> StringDrop[s, 1], StringReplaceList[s, {"111" -> "0", "00" -> ""}]}];
    Module[{uptolen = 5, searchdepth = 10, mi = "31", g}, g = NestGraph[MIUNext, mi, searchdepth]; Map[Quiet[Check[Map[FromDigits, StringLength[StringJoin[If[# == mi, #, First[Sort[FindPath[g, mi, #, {GraphDistance[g, mi, #]}, All]]]]]]], "Not found"]] &, Array[MIUStrings, uptolen - 1, 2], {2}]] (* Considers theorems up to 5 characters long, looking up to 10 steps away from the MI axiom -- please note it takes a while *)

A091917 Coefficient array of polynomials (z-1)^n-1.

Original entry on oeis.org

1, -2, 1, 0, -2, 1, -2, 3, -3, 1, 0, -4, 6, -4, 1, -2, 5, -10, 10, -5, 1, 0, -6, 15, -20, 15, -6, 1, -2, 7, -21, 35, -35, 21, -7, 1, 0, -8, 28, -56, 70, -56, 28, -8, 1, -2, 9, -36, 84, -126, 126, -84, 36, -9, 1, 0, -10, 45, -120, 210, -252, 210, -120, 45, -10, 1, -2, 11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1
Offset: 0

Views

Author

Paul Barry, Feb 13 2004

Keywords

Comments

The first element has been changed to 1 to produce an invertible matrix. Alternatively, this is the coefficient array for the polynomials P(z,n) = Product_{j=0..n-1} (z-(1+w(n)^j)) where w(n) = e^(2*Pi*i/n), i=sqrt(-1).
The row entries determine interesting recurrences. For instance, a(n) = 4a(n-1) + 6a(n-2) + 4a(n-3), a(0)=a(1)=a(2)=1, gives A038503. Sequences of the form a(n) = Sum_{k=0..n} (binomial(n,k) if k mod m = r, otherwise 0), for r=0..m-1, result. Equivalently, a(n) = Sum_{j=0..n-1} 2^n*(cos(Pi*j/m))^n*cos((n-2r)Pi*j/m)/m, r=0..m-1. These include A024493, A024494, A024495, A038503, A038504, A038505. The inverse matrix is A091918.
Triangle T(n,k), 0 <= k <= n, read by rows given by [ -2, 2, 1/2, -1/2, 0, 0, 0, 0, 0, ...] DELTA [1, 0, -1/2, 1/2, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 11 2007

Examples

			Rows begin:
  { 1},
  {-2,  1},
  { 0, -2,  1},
  {-2,  3, -3,  1},
  { 0, -4,  6, -4,  1},
  ...
		

Programs

  • Maple
    T:= n-> `if`(n=0, 1, (p-> seq(coeff(p,z,i), i=0..n))((z-1)^n-1)):
    seq(T(n), n=0..12);  # Alois P. Heinz, May 23 2015
  • Mathematica
    Table[If[n == 0, 1, CoefficientList[(z-1)^n-1, z]], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)
  • PARI
    row(n) = if (n==0, 1, Vecrev((z-1)^n-1)); \\ Michel Marcus, May 23 2015

Formula

T(n,k) = T(n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,1) = -2, T(2,0) = 0, T(n,k) = 0 for k > n or for k < 0. - Philippe Deléham, May 23 2015
G.f.: (1-2*x-x^2+x^2*y)/((x-1)*(-x+x*y-1)). - R. J. Mathar, Aug 11 2015

A131090 First differences of A131666.

Original entry on oeis.org

0, 1, 0, 1, 1, 4, 7, 15, 28, 57, 113, 228, 455, 911, 1820, 3641, 7281, 14564, 29127, 58255, 116508, 233017, 466033, 932068, 1864135, 3728271, 7456540, 14913081, 29826161, 59652324, 119304647, 238609295, 477218588, 954437177, 1908874353
Offset: 0

Views

Author

Paul Curtz, Sep 24 2007

Keywords

Comments

The first differences b(n)=a(n+1)-a(n) obey the recurrence b(n+1)-2b(n) = (-3,3,-2,3,-3,2), continued with period 6.
The 2nd differences c(n)=b(n+1)-b(n) obey the recurrence c(n+1)-2c(n) = (6,-5,5,-6,5,-5), periodically continued with period 6.
The hexaperiodic coefficients in these recurrences for A113405, A131666 and their higher order differences define a table,
0, 0, 1, 0, 0, -1 <- A113405
0, 1, -1, 0, -1, 1 <- A131666
1, -2, 1, -1, 2, -1 <- a(n)
-3, 3, -2, 3, -3, 2 <- b(n)
6, -5, 5, -6, 5, -5 <- c(n)
-11,10,-11, 11,-10, 11
21,-21,22,-21, 21,-22
...
in which the first three columns are A024495, A131708 and A024493, multiplied by a checkerboard pattern of signs.

Programs

  • Mathematica
    LinearRecurrence[{2,0,-1,2},{0,1,0,1},40] (* Harvey P. Dale, Jan 15 2016 *)

Formula

a(n) = A131666(n+1)-A131666(n).
a(n+1)-2a(n) = A131556(n), a sequence with period length 6.
G.f.: -(x-1)^2*x / ((x+1)*(2*x-1)*(x^2-x+1)). - Colin Barker, Mar 04 2013

Extensions

Edited by R. J. Mathar, Jun 28 2008

A137221 a(n) = 5*a(n-1) - 9*a(n-2) + 8*a(n-3) - 4*a(n-4), with a(0)=0, a(1)=0, a(2)=0, a(3)=1.

Original entry on oeis.org

0, 0, 0, 1, 5, 16, 43, 107, 256, 597, 1365, 3072, 6827, 15019, 32768, 70997, 152917, 327680, 699051, 1485483, 3145728, 6640981, 13981013, 29360128, 61516459, 128625323, 268435456, 559240533, 1163220309, 2415919104, 5010795179
Offset: 0

Views

Author

Paul Curtz, Mar 07 2008

Keywords

Crossrefs

Same recurrence as in A100335 (essentially first differences of this sequence).

Programs

  • Magma
    [n le 4 select Floor((n-1)/3) else 5*Self(n-1) -9*Self(n-2) +8*Self(n-3) -4*Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 05 2022
    
  • Mathematica
    Table[(1/3)*(2^(n-1)*(n-2) + ChebyshevU[n, 1/2]), {n, 0, 40}] (* G. C. Greubel, Jan 05 2022 *)
    LinearRecurrence[{5,-9,8,-4},{0,0,0,1},40] (* Harvey P. Dale, Apr 30 2023 *)
  • Sage
    [(1/3)*(2^(n-1)*(n-2) + chebyshev_U(n, 1/2)) for n in (0..40)] # G. C. Greubel, Jan 05 2022

Formula

Binomial transform of A002264; a(n+1) - 2*a(n) = A024495.
From R. J. Mathar, Mar 17 2008: (Start)
O.g.f.: x^3/((1-x+x^2)(1-2*x)^2).
a(n) = ( -3*2^n + A001787(n+1) + 2*A010892(n) )/6. (End)
a(n) = (1/3)*(2^(n-1)*(n-2) + ChebyshevU(n, 1/2)). - G. C. Greubel, Jan 05 2022

Extensions

More terms from R. J. Mathar, Mar 17 2008

A139469 a(n) = Sum_{k=0..n} C(n,3k+2)^2.

Original entry on oeis.org

0, 0, 1, 9, 36, 101, 261, 882, 3921, 17253, 67554, 243695, 876789, 3324906, 13166791, 52301709, 203824548, 782913717, 3010327497, 11695756698, 45823049817, 179787741723, 703527078258, 2747647985241, 10739885115573, 42082084255050, 165225573240651
Offset: 0

Views

Author

N. J. A. Sloane, Jun 12 2008

Keywords

Comments

The recurrence is same as for A119363. - Vaclav Kotesovec, Mar 12 2019

Crossrefs

Programs

  • Magma
    [&+[Binomial(n, 3*k+2)^2: k in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Mar 14 2019
  • Mathematica
    Table[Sum[Binomial[n, 3*k + 2]^2, {k, 0, n}], {n, 0, 40}] (* Vaclav Kotesovec, Mar 12 2019 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n, 3*k+2)^2); \\ Michel Marcus, Mar 12 2019
    

Formula

a(n) ~ 4^n / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 12 2019

A167613 Array T(n,k) read by antidiagonals: the k-th term of the n-th difference of A131531.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 0, -1, -2, -3, 0, 0, 1, 3, 6, -1, -1, -1, -2, -5, -11, 0, 1, 2, 3, 5, 10, 21, 0, 0, -1, -3, -6, -11, -21, -42, 1, 1, 1, 2, 5, 11, 22, 43, 85, 0, -1, -2, -3, -5, -10, -21, -43, -86, -171, 0, 0, 1, 3, 6, 11, 21, 42, 85, 171, 342, -1, -1, -1, -2, -5, -11, -22, -43, -85, -170, -341, -683, 0, 1, 2, 3, 5, 10, 21, 43, 86, 171, 341, 682, 1365
Offset: 0

Views

Author

Paul Curtz, Nov 07 2009

Keywords

Comments

The array contains A131708(0) in diagonal 0, then -A024495(0..1) in diagonal 1, then A024493(0..2) in diagonal 2, then -A131708(0..3), then A024495(0..4), then -A024493(0..5).

Examples

			The table starts in row n=0 with columns k >= 0 as:
0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0 A131531
0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1 A092220
1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2 A131556
-3, 3, -2, 3, -3, 2, -3, 3, -2, 3, -3, 2, -3, 3, -2, 3, -3, 2, -3 A164359
6, -5, 5, -6, 5, -5, 6, -5, 5, -6, 5, -5, 6, -5, 5, -6, 5, -5, 6, -5
-11, 10, -11, 11, -10, 11, -11, 10, -11, 11, -10, 11, -11, 10, -11
21, -21, 22, -21, 21, -22, 21, -21, 22, -21, 21, -22, 21, -21, 22
		

Crossrefs

Cf. A167617 (antidiagonal sums).

Programs

  • Maple
    A131531 := proc(n) op((n mod 6)+1,[0,0,1,0,0,-1]) ; end proc:
    A167613 := proc(n,k) option remember; if n= 0 then A131531(k); else procname(n-1,k+1)-procname(n-1,k) ; end if;end proc: # R. J. Mathar, Dec 17 2010
  • Mathematica
    nmax = 13;
    A131531 = Table[{0, 0, 1, 0, 0, -1}, {nmax}] // Flatten;
    T[n_] := T[n] = Differences[A131531, n];
    T[n_, k_] := T[n][[k]];
    Table[T[n-k, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 20 2023 *)

Formula

T(0,k) = A131531(k). T(n,k) = T(n-1,k+1) - T(n-1,k), n > 0.
T(n,n) = A001045(n). T(n,n+1) = -A001045(n). T(n,n+2) = A078008(n).
T(n,0) = -T(n,3) = (-1)^(n+1)*A024495(n).
T(n,1) = (-1)^(n+1)*A131708(n).
T(n,2) = (-1)^n*A024493(n).
T(n,k+6) = T(n,k).
a(n) = A131708(0), -A024495(0,1), A024493(0,1,2), -A131708(0,1,2,3), A024495(0,1,2,3,4), -A024493(0,1,2,3,4,5).

A132658 a(6n+k) = 3a(6n+k-1)-3a(6n+k-2)+2a(6n+k-3), k = 0, 1, 3, 4, 5; a(6n+2) = 3a(6n+1)-3a(6n). a(0) = a(1) = 0, a(2) = 1.

Original entry on oeis.org

0, 0, 1, 3, 6, 11, 21, 42, 63, 105, 210, 441, 903, 1806, 2709, 4515, 9030, 18963, 38829, 77658, 116487, 194145, 388290, 815409, 1669647, 3339294, 5008941, 8348235, 16696470, 35062587, 71794821, 143589642, 215384463, 358974105, 717948210
Offset: 0

Views

Author

Paul Curtz, Nov 15 2007

Keywords

Comments

The third differences are 0, 0, 1, 3, 6, -11, 21, 42, 63, 105, 210, -441, ..., equal to the original sequence if each 6th term is negated.

Crossrefs

Cf. A024495.

Programs

  • Maple
    A132658 := proc(n)
        option remember;
        if n <=1 then
            0;
        elif n = 2 then
            1;
        elif modp(n,6) = 2 then
            3*procname(n-1)-3*procname(n-2);
        else
            3*procname(n-1)-3*procname(n-2)+2*procname(n-3) ;
        end if;
    end proc:
    seq(A132658(n),n=0..80) ; # R. J. Mathar, Aug 07 2017
  • Mathematica
    a[n_] := a[n] = Which[n <= 1, 0, n == 2, 1, Mod[n, 6] == 2, 3a[n-1] - 3a[n-2], True, 3a[n-1] - 3a[n-2] + 2a[n-3]];
    Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Oct 27 2023, after R. J. Mathar *)

Extensions

Edited by R. J. Mathar, Jul 07 2008

A135575 a(n) = A135574(n+1) - 2*A135574(n).

Original entry on oeis.org

0, 3, -5, 9, -16, 30, -63, 129, -257, 513, -1024, 2046, -4095, 8193, -16385, 32769, -65536, 131070, -262143, 524289, -1048577, 2097153, -4194304, 8388606, -16777215, 33554433, -67108865, 134217729, -268435456, 536870910, -1073741823, 2147483649, -4294967297, 8589934593
Offset: 0

Views

Author

Paul Curtz, Feb 24 2008

Keywords

Programs

  • Maple
    A024495 := proc(n) option remember ; if n <=1 then 0 ; elif n = 2 then 1; elif n = 3 then 3 ; else A024495(n-1)-A024495(n-2)+2^(n-2) ; fi ; end: A135574 := proc(n) option remember ; A024495(2*floor(n/2)+1 - ( n mod 2)) ; end: A135575 := proc(n) A135574(n+1)-2*A135574(n) ; end: seq(A135575(n),n=0..80) ; # R. J. Mathar, Mar 31 2008
  • Mathematica
    LinearRecurrence[{-2, -1, -2, -1, -2}, {0, 3, -5, 9, -16}, 25] (* G. C. Greubel, Oct 19 2016 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; -2,-1,-2,-1,-2]^n*[0;3;-5;9;-16])[1,1] \\ Charles R Greathouse IV, Oct 19 2016

Formula

G.f.: x*(3*x^3+2*x^2+x+3)/((2*x+1)*(x^2+x+1)*(x^2-x+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
a(n) + 2*a(n-1) + a(n-2) + 2*a(n-3) + a(n-4) + 2*a(n-5) = 0. - G. C. Greubel, Oct 19 2016

Extensions

More terms from R. J. Mathar, Mar 31 2008
Previous Showing 31-40 of 66 results. Next