A366694
G.f. satisfies A(x) = (1 + x)^2 + x*A(x)^2.
Original entry on oeis.org
1, 3, 7, 23, 88, 363, 1576, 7091, 32768, 154588, 741442, 3604495, 17721394, 87960004, 440165522, 2218289051, 11248850578, 57354875692, 293860786178, 1512169500356, 7811933144432, 40499933496818, 210643657689644, 1098802033533295, 5747266778089846
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*(k+1), n-k)*binomial(2*k, k)/(k+1));
A366695
G.f. satisfies A(x) = (1 + x)^3 + x*A(x)^2.
Original entry on oeis.org
1, 4, 11, 39, 166, 765, 3716, 18725, 96956, 512690, 2756806, 15027651, 82853678, 461215414, 2588619402, 14632777719, 83232244238, 476040155118, 2736005962314, 15793863291792, 91530881427964, 532343678619778, 3106141476531628, 18177446846299299
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*(k+1), n-k)*binomial(2*k, k)/(k+1));
A379171
G.f. A(x) satisfies A(x) = (1 + x)/(1 - x*A(x))^3.
Original entry on oeis.org
1, 4, 21, 139, 1021, 8010, 65708, 556751, 4834686, 42800265, 384832083, 3504693519, 32261240127, 299685628629, 2805773759322, 26448278629697, 250806022116194, 2390973659474304, 22901157688878983, 220279614235505630, 2126890041331033797, 20606993367985131716
Offset: 0
-
a(n) = sum(k=0, n, binomial(n-k+1, k)*binomial(4*n-4*k+2, n-k)/(n-k+1));
A103970
Expansion of (1 - sqrt(1 - 4*x - 12*x^2))/(2*x).
Original entry on oeis.org
1, 4, 8, 32, 128, 576, 2688, 13056, 65024, 330752, 1710080, 8962048, 47497216, 254132224, 1370849280, 7447117824, 40707293184, 223731253248, 1235630948352, 6853893292032, 38166664839168, 213288826699776, 1195775593807872, 6723691157127168, 37908469021409280, 214260335517892608, 1213784937073737728, 6890689428042285056
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( (1-Sqrt(1-4*x-12*x^2))/(2*x) )); // G. C. Greubel, Mar 16 2019
-
n:=30:a(0):=1:a(1):=4: k:=1: for k from 1 to n do a(k+1):=sum('a(p)*a(k-p)','p'=0..k):od:seq(a(k),k=0..n); # Richard Choulet, Dec 17 2009
taylor(((1-(1-4*z-12*z^2)^0.5)/(2*z)),z=0,32); # Richard Choulet, Dec 17 2009
-
CoefficientList[Series[(1 - Sqrt[1-4x-12x^2])/(2x), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 18 2017 *)
-
my(x='x+O('x^35)); Vec((1-sqrt(1-4*x-12*x^2))/(2*x)) \\ G. C. Greubel, Mar 16 2019
-
((1-sqrt(1-4*x-12*x^2))/(2*x)).series(x, 35).coefficients(x, sparse=False) # G. C. Greubel, Mar 16 2019
A103971
Expansion of (1 - sqrt(1 - 4*x - 16*x^2))/(2*x).
Original entry on oeis.org
1, 5, 10, 45, 190, 930, 4660, 24445, 131190, 719830, 4013260, 22684370, 129661740, 748252580, 4353379560, 25508284445, 150392391590, 891549228430, 5310994644060, 31775749689670, 190860711108740, 1150473009844380
Offset: 0
-
n:=30:a(0):=1:a(1):=5: for k from 1 to n do a(k+1):=sum('a(p)*a(k-p)','p'=0..k):od:seq(a(k),k=0..n); # Richard Choulet, Dec 17 2009
-
CoefficientList[Series[(1-Sqrt[1-4x-16x^2])/(2x),{x,0,30}],x] (* Harvey P. Dale, Apr 02 2012 *)
A103972
Expansion of (1-sqrt(1-4*x-20*x^2))/(2*x).
Original entry on oeis.org
1, 6, 12, 60, 264, 1392, 7392, 41424, 236640, 1384512, 8224896, 49554816, 301884672, 1856878080, 11514915840, 71915838720, 451938731520, 2855705994240, 18132621772800, 115637702461440, 740356410961920, 4756888756101120, 30662391191715840, 198229520200704000, 1285001080928845824
Offset: 0
-
n:=30:a(0):=1:a(1):=6 :for k from 1 to n do a(k+1):=sum('a(p)*a(k-p)','p'=0..k):od:seq(a(k),k=0..n); # Richard Choulet, Dec 17 2009
-
CoefficientList[Series[(1-Sqrt[1-4*x-20*x^2])/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
-
x='x+O('x^66); Vec((1-sqrt(1-4*x-20*x^2))/(2*x)) \\ Joerg Arndt, May 13 2013
A260772
Certain directed lattice paths.
Original entry on oeis.org
1, 3, 10, 41, 190, 946, 4940, 26693, 147990, 837102, 4811860, 28027210, 165057100, 981177060, 5879570200, 35478788269, 215398416870, 1314794380374, 8064119033220, 49673222082782, 307163049317540, 1906066361809148, 11865666767361960, 74081851132379426
Offset: 0
- Lars Blomberg, Table of n, a(n) for n = 0..100
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv preprint arXiv:1410.5747 [math.CO], 2014.
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, Discrete Mathematics, Volume 339, Issue 3, 6 March 2016, Pages 1116-1139.
- Heba Bou KaedBey, Mark van Hoeij, and Man Cheung Tsui, Solving Third Order Linear Difference Equations in Terms of Second Order Equations, arXiv:2402.11121 [math.AC], 2024. See p. 3.
-
# A260772 satisfies a 4th-order recurrence that can be reduced
# to a 2nd-order recurrence given in this program t:
t := proc(n) options remember;
if n <= 1 then
[-1/2, 0, 1, 4][2*n+2]
else
(16*(n-2)*(2*n-3)*(5*n-2)*t(n-2) + (440*n^3-1056*n^2+724*n-144)*t(n-1))
/( n*(2*n+1)*(5*n-7) )
fi
end:
A260772 := proc(n)
t(n/2) + ( (2-2*n)*t((n-1)/2)+(n+2)*t((n+1)/2) ) / (1+5*n)
end:
seq(A260772(i),i=0..100);
# Mark van Hoeij, Jul 14 2022
-
a(n):=if n=0 then 1 else sum((-1)^j*binomial(n,j)*binomial(3*n-4*j,n-4*j+1),j,0,(n+1)/4)/n; /* Vladimir Kruchinin, Apr 04 2019 */
-
a(n) = if (n==0, 1, sum(j=0, (n+1)/4, (-1)^j*binomial(n,j)*binomial(3*n-4*j, n-4*j+1))/n); \\ Michel Marcus, Apr 05 2019
A367042
G.f. satisfies A(x) = 1 + x^3 + x*A(x)^2.
Original entry on oeis.org
1, 1, 2, 6, 16, 48, 152, 500, 1688, 5816, 20368, 72288, 259424, 939808, 3432192, 12622416, 46706144, 173762016, 649569216, 2438748864, 9191656192, 34765298944, 131912452864, 501987944832, 1915417307392, 7326620001536, 28088736525824, 107913607531520
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n-3*k+1, k)*binomial(2*(n-3*k), n-3*k)/(n-3*k+1));
A367639
G.f. A(x) satisfies A(x) = (1 + x)^2 + x*A(x)^2 / (1 + x).
Original entry on oeis.org
1, 3, 6, 16, 52, 184, 688, 2672, 10672, 43552, 180800, 761088, 3241088, 13937408, 60435968, 263962880, 1160188672, 5127762432, 22775636992, 101608357888, 455105255424, 2045751037952, 9225923895296, 41731062358016, 189275050729472, 860630181167104
Offset: 0
-
a(n) = sum(k=0, n, binomial(k+2, n-k)*binomial(2*k, k)/(k+1));
A378317
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(2*r+k,n)/(2*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 4, 0, 1, 6, 12, 12, 0, 1, 8, 24, 40, 40, 0, 1, 10, 40, 92, 144, 144, 0, 1, 12, 60, 176, 360, 544, 544, 0, 1, 14, 84, 300, 752, 1440, 2128, 2128, 0, 1, 16, 112, 472, 1400, 3200, 5872, 8544, 8544, 0, 1, 18, 144, 700, 2400, 6352, 13664, 24336, 35008, 35008, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 4, 12, 24, 40, 60, 84, ...
0, 12, 40, 92, 176, 300, 472, ...
0, 40, 144, 360, 752, 1400, 2400, ...
0, 144, 544, 1440, 3200, 6352, 11616, ...
0, 544, 2128, 5872, 13664, 28480, 54768, ...
-
T(n, k, t=0, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
Comments