cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A185327 Number of partitions of n into parts >= 7.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 15, 18, 20, 24, 27, 32, 36, 42, 48, 56, 63, 73, 83, 96, 108, 125, 141, 162, 183, 209, 236, 270, 304, 346, 390, 443, 498, 565, 635, 719, 807, 911, 1022, 1153, 1291, 1453, 1628, 1829, 2045
Offset: 0

Views

Author

Jason Kimberley, Feb 03 2011

Keywords

Comments

a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 7 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.
By removing a single part of size 7, an A026800 partition of n becomes an A185327 partition of n - 7. Hence this sequence is essentially the same as A026800.

Examples

			The  a(0)=1 empty partition vacuously has each part >= 7.
The  a(7)=1 partition is 7.
The  a(8)=1 partition is 8.
............................
The a(13)=1 partition is 13.
The a(14)=2 partitions are 7+7 and 14.
		

Crossrefs

2-regular simple graphs with girth at least 7: A185117 (connected), A185227 (disconnected), this sequence (not necessarily connected).
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), this sequence (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).

Programs

  • Magma
    p :=  func< n | n lt 0 select 0 else NumberOfPartitions(n) >;
    A185327 := func< n | p(n)-p(n-1)-p(n-2)+p(n-5)+2*p(n-7)-p(n-9)-p(n-10)- p(n-11)-p(n-12)+2*p(n-14)+p(n-16)-p(n-19)-p(n-20)+p(n-21) >;
    
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+7): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    seq(coeff(series(1/mul(1-x^(m+7), m = 0..80), x, n+1), x, n), n = 0..70); # G. C. Greubel, Nov 03 2019
  • Mathematica
    f[1, 1] = f[0, k_] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Table[ f[n, 7], {n, 0, 65}] (* Robert G. Wilson v, Jan 31 2011 *) (* moved from A026800 by Jason Kimberley, Feb 03 2011 *)
    Join[{1},Table[Count[IntegerPartitions[n],?(Min[#]>=7&)],{n,0,70}]] (* _Harvey P. Dale, Oct 16 2011 *)
    CoefficientList[Series[1/QPochhammer[x^7, x], {x, 0, 75}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+7))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A185327_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/product((1-x^(m+7)) for m in (0..80)) ).list()
    A185327_list(70) # G. C. Greubel, Nov 03 2019

Formula

G.f.: Product_{m>=7} 1/(1-x^m).
a(n) = p(n) - p(n-1) - p(n-2) + p(n-5) + 2*p(n-7) - p(n-9) - p(n-10) - p(n-11) - p(n-12) + 2*p(n-14) + p(n-16) - p(n-19) - p(n-20) + p(n-21) where p(n)=A000041(n). - Shanzhen Gao, Oct 28 2010 [moved/copied from A026800 by Jason Kimberley, Feb 03 2011]
This sequence is the Euler transformation of A185117.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 5*Pi^6 / (6*sqrt(3)*n^4). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=0} x^(7*k) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Nov 28 2020
G.f.: 1 + Sum_{n >= 1} x^(n+6)/Product_{k = 0..n-1} (1 - x^(k+7)). - Peter Bala, Dec 01 2024

A185328 Number of partitions of n with parts >= 8.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 9, 10, 12, 13, 16, 17, 21, 23, 27, 30, 36, 39, 46, 51, 60, 66, 77, 85, 99, 110, 126, 140, 162, 179, 205, 228, 260, 289, 329, 365, 415, 461, 521, 579, 655, 726, 818, 909, 1022, 1134, 1273, 1411
Offset: 0

Views

Author

Jason Kimberley, Jan 31 2012

Keywords

Comments

a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 8 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.
By removing a single part of size 8, an A026801 partition of n becomes an A185328 partition of n - 8. Hence this sequence is essentially the same as A026801.

Crossrefs

Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), this sequence (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+8): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    N:= 100: # for a(0)..a(N)
    g:= mul(1/(1-x^m),m=8..N):
    S:= series(g,x,N+1):
    seq(coeff(S,x,n),n=0..N); # Robert Israel, Dec 19 2017
  • Mathematica
    CoefficientList[Series[1/QPochhammer[x^8, x], {x,0,75}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+8))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A185328_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/product((1-x^(m+8)) for m in (0..80)) ).list()
    A185328_list(70) # G. C. Greubel, Nov 03 2019

Formula

G.f.: Product_{m>=8} 1/(1-x^m).
a(n) = p(n) - p(n-1) - p(n-2) + p(n-5) + p(n-7) + p(n-8) - p(n-10) - p(n-11) - 2*p(n-12) + 2*p(n-16) + p(n-17) + p(n-18) - p(n-20) - p(n-21) - p(n-23) + p(n-26) + p(n-27) - p(n-28) where p(n)=A000041(n). - Shanzhen Gao
This sequence is the Euler transformation of A185118.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 35*Pi^7 / (18*sqrt(2)*n^(9/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=0} x^(8*k) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Nov 28 2020
G.f.: 1 + Sum_{n >= 1} x^(n+7)/Product_{k = 0..n-1} (1 - x^(k+8)). - Peter Bala, Dec 01 2024

A026800 Number of partitions of n in which the least part is 7.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 15, 18, 20, 24, 27, 32, 36, 42, 48, 56, 63, 73, 83, 96, 108, 125, 141, 162, 183, 209, 236, 270, 304, 346, 390, 443, 498, 565, 635, 719, 807, 911, 1022, 1153, 1291, 1453, 1628, 1829, 2045
Offset: 0

Views

Author

Keywords

Comments

From Jason Kimberley, Feb 03 2011: (Start)
a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth exactly 7 (all such graphs are simple). The integer i corresponds to the i-cycle; the addition of integers corresponds to the disconnected union of cycles.
By removing a single part of size 7, an A026800 partition of n becomes an A185327 partition of n - 7. (End)

Examples

			a(0)=0 because there does not exist a least part of the empty partition.
The  a(7)=1 partition is 7.
The a(14)=1 partition is 7+7.
The a(15)=1 partition is 7+8.
.............................
The a(20)=1 partition is 7+13.
The a(21)=2 partitions are 7+7+7 and 7+14.
		

Crossrefs

Cf. A185327 (Mathematica code)
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), this sequence (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10). - Jason Kimberley, Feb 03 2011

Programs

  • Magma
    p :=  func< n | n lt 0 select 0 else NumberOfPartitions(n) >;
    A026800 := func< n | p(n-7)-p(n-8)-p(n-9)+p(n-12)+2*p(n-14)-p(n-16)- p(n-17)-p(n-18)-p(n-19)+2*p(n-21)+p(n-23)-p(n-26)-p(n-27)+p(n-28) >; // Jason Kimberley, Feb 03 2011
    
  • Magma
    R:=PowerSeriesRing(Integers(), 75); [0,0,0,0,0,0,0] cat Coefficients(R!( x^7/(&*[1-x^(m+7): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    N:= 100: # for a(0)..a(N)
    S:= series(x^7/mul(1-x^i,i=7..N-7),x,N+1):
    seq(coeff(S,x,i),i=0..N); # Robert Israel, Jul 04 2019
  • Mathematica
    CoefficientList[Series[x^7/QPochhammer[x^7, x], {x, 0, 75}], x] (* G. C. Greubel, Nov 03 2019 *)
    Join[{0},Table[Count[IntegerPartitions[n],?(#[[-1]]==7&)],{n,80}]] (* _Harvey P. Dale, Apr 05 2025 *)
  • PARI
    my(x='x+O('x^75)); concat([0,0,0,0,0,0,0], Vec(x^7/prod(m=0,80, 1-x^(m+7)))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A026800_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^7/product((1-x^(m+7)) for m in (0..80)) ).list()
    A026800_list(75) # G. C. Greubel, Nov 03 2019

Formula

G.f.: x^7 * Product_{m>=7} 1/(1-x^m).
a(n) = p(n-7) -p(n-8) -p(n-9) +p(n-12) +2*p(n-14) -p(n-16) -p(n-17) -p(n-18) -p(n-19) +2*p(n-21) +p(n-23) -p(n-26) -p(n-27) +p(n-28) where p(n)=A000041(n) including the implicit p(n)=0 for negative n. - Shanzhen Gao, Oct 28 2010; offset corrected / made explicit by Jason Kimberley, Feb 03 2011
a(n) ~ exp(Pi*sqrt(2*n/3)) * 5*Pi^6 / (6*sqrt(3)*n^4). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(7*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com), Apr 12 2001

A026801 Number of partitions of n in which the least part is 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 9, 10, 12, 13, 16, 17, 21, 23, 27, 30, 36, 39, 46, 51, 60, 66, 77, 85, 99, 110, 126, 140, 162, 179, 205, 228, 260, 289, 329, 365, 415, 461, 521, 579, 655, 726, 818, 909, 1022, 1134, 1273, 1411
Offset: 1

Views

Author

Keywords

Crossrefs

Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800 (g=7), this sequence (g=8), A026802 (g=9), A026803 (g=10).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); [0,0,0,0,0,0,0] cat Coefficients(R!( x^8/(&*[1-x^(m+8): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    seq(coeff(series(x^8/mul(1-x^(m+8), m = 0..80), x, n+1), x, n), n = 1..70); # G. C. Greubel, Nov 03 2019
  • Mathematica
    Rest@CoefficientList[Series[x^8/QPochhammer[x^8, x], {x, 0, 75}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^70)); concat(vector(7), Vec(x^8/prod(m=0,80, 1-x^(m+8)))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A026801_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^8/product((1-x^(m+8)) for m in (0..80)) ).list()
    a=A026801_list(71); a[1:] # G. C. Greubel, Nov 03 2019

Formula

G.f.: x^8 * Product_{m>=8} 1/(1-x^m).
a(n+8) = p(n) -p(n-1) -p(n-2) +p(n-5) +p(n-7) +p(n-8) -p(n-10) -p(n-11) -2*p(n-12) +2*p(n-16) +p(n-17) +p(n-18) -p(n-20) -p(n-21) -p(n-23) +p(n-26) +p(n-27) -p(n-28) where p(n)=A000041(n). - Shanzhen Gao, Oct 28 2010
a(n) ~ exp(Pi*sqrt(2*n/3)) * 35*Pi^7 / (18*sqrt(2)*n^(9/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(8*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com), Apr 12 2001

A026802 Number of partitions of n in which the least part is 9.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 24, 26, 30, 34, 39, 43, 50, 55, 63, 71, 80, 89, 102, 113, 128, 143, 161, 179, 203, 225, 253, 282, 316, 351, 395, 437, 489, 544, 607, 673, 752, 832, 927, 1028, 1143
Offset: 1

Views

Author

Keywords

Crossrefs

Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800 (g=7), A026801 (g=8), this sequence (g=9), A026803 (g=10).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80); [0,0,0,0,0,0,0,0] cat Coefficients(R!( x^9/(&*[1-x^(m+9): m in [0..85]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    seq(coeff(series(x^9/mul(1-x^(m+9), m = 0..85), x, n+1), x, n), n = 1..80); # G. C. Greubel, Nov 03 2019
  • Mathematica
    Table[Count[IntegerPartitions[n],?(Min[#]==9&)],{n,80}] (* _Harvey P. Dale, May 09 2013 *)
    Rest@CoefficientList[Series[x^9/QPochhammer[x^9, x], {x,0,80}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^70)); concat(vector(8), Vec(x^9/prod(m=0,85, 1-x^(m+9)))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A026802_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^9/product((1-x^(m+9)) for m in (0..85)) ).list()
    a=A026802_list(81); a[1:] # G. C. Greubel, Nov 03 2019

Formula

G.f.: x^9 * Product_{m>=9} 1/(1-x^m).
a(n+9) = p(n) -p(n-1) -p(n-2) +p(n-5) +p(n-7) +p(n-9) -p(n-11) -2*p(n-12) -p(n-13) -p(n-15) +p(n-16) +p(n-17) +2*p(n-18) +p(n-19) +p(n-20) -p(n-21) -p(n-23) -2*p(n-24) -p(n-25) +p(n-27) +p(n-29) +p(n-31) -p(n-34) -p(n-35) +p(n-36) where p(n)=A000041(n). - Shanzhen Gao, Oct 28 2010
a(n) ~ exp(Pi*sqrt(2*n/3)) * 70*Pi^8 / (9*sqrt(3)*n^5). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(9*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com), Apr 12 2001

A026803 Number of partitions of n in which the least part is 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 8, 10, 11, 13, 14, 17, 18, 21, 23, 27, 29, 34, 37, 43, 47, 54, 59, 68, 74, 85, 93, 106, 116, 132, 145, 164, 180, 203, 223, 252, 276, 310, 341, 382, 420, 470, 516, 576, 633, 706, 775, 863
Offset: 1

Views

Author

Keywords

Comments

In general, if g>=1 and g.f. = x^g * Product_{m>=g} 1/(1-x^m), then a(n,g) ~ Pi^(g-1) * (g-1)! * exp(Pi*sqrt(2*n/3)) / (2^((g+3)/2) * 3^(g/2) * n^((g+1)/2)) ~ p(n) * Pi^(g-1) * (g-1)! / (6*n)^((g-1)/2), where p(n) is the partition function A000041(n). - Vaclav Kotesovec, Jun 02 2018

Crossrefs

Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800 (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80); [0,0,0,0,0,0,0,0,0] cat Coefficients(R!( x^10/(&*[1-x^(m+10): m in [0..85]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    seq(coeff(series(x^10/mul(1-x^(m+10), m = 0..85), x, n+1), x, n), n = 1..80); # G. C. Greubel, Nov 03 2019
  • Mathematica
    Rest@CoefficientList[Series[x^10/QPochhammer[x^10, x], {x,0,80}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^80)); concat(vector(9), Vec(x^10/prod(m=0,85, 1-x^(m+10)))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A026803_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^10/product((1-x^(m+10)) for m in (0..85)) ).list()
    a=A026803_list(71); a[1:] # G. C. Greubel, Nov 03 2019

Formula

G.f.: x^10 * Product_{m>=10} 1/(1-x^m).
a(n) ~ exp(Pi*sqrt(2*n/3)) * 35*sqrt(2)*Pi^9 / (3*n^(11/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(10*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com), Apr 12 2001

A185134 Number of, not necessarily connected, 3-regular simple graphs on 2n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 21, 103, 752, 7385, 91939, 1345933, 22170664, 401399440, 7887389438, 166897766824, 3781593764772
Offset: 0

Views

Author

Jason Kimberley, Mar 21 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 4: A198314 (any k), A185644 (triangle); fixed k: A026797 (k=2), this sequence (k=3), A185144 (k=4).
Not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g: A185130 (triangle); fixed g: A185133 (g=3), this sequence (g=4), A185135 (g=5), A185136 (g=6).

Formula

a(n) = A185334(n) - A185335(n).
a(n) = A006924(n) + A185034(n).

A185144 Number of not necessarily connected 4-regular simple graphs on n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 12, 31, 220, 1606, 16829, 193900, 2452820, 32670331, 456028487, 6636066126, 100135577863, 1582718910743
Offset: 0

Views

Author

Jason Kimberley, Nov 04 2011

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 4: A198314 (any k), A185644 (triangle); fixed k: A026797 (k=2), A185134 (k=3), this sequence (k=4).
A185143 (g=3), A185144 (g=4).
Not necessarily connected 4-regular simple graphs with girth exactly g: A185140 (triangle); fixed g: A185143 (g=3), this sequence (g=4).

Formula

a(n) = A184944(n) + A185044(n) = A185140(n,4).

Extensions

Corrected by Jason Kimberley, Jan 03 2013

A198314 Number of, not necessarily connected, regular simple graphs on n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 4, 1, 8, 3, 37, 33, 335, 1610, 17985, 193911, 2867313, 32674066, 1581626531, 6705889862
Offset: 0

Views

Author

Jason Kimberley, Dec 12 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 4: this sequence (any k), A185644 (triangle); fixed k: A026797 (k=2), A185134 (k=3), A185144 (k=4).
Not necessarily connected regular simple graphs girth exactly g: A198313 (g=3), this sequence (g=4), A198315 (g=5), A198316 (g=6), A198317 (g=7), A198318 (g=8).

Formula

a(n) = A186744(n) + A210714(n).
a(n) = A185314(n) - A185315(n).

Extensions

a(10) corrected from 9 to 8 by Jason Kimberley, Feb 22 2013

A339165 Number of compositions (ordered partitions) of n into distinct parts, the least being 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 8, 8, 14, 14, 20, 20, 26, 50, 56, 80, 110, 134, 164, 212, 242, 410, 464, 632, 806, 1118, 1292, 1724, 2042, 2594, 3752, 4448, 5726, 7382, 9524, 12020, 15122, 18602, 23264, 28424, 39830, 46670, 60476, 74780
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 25 2020

Keywords

Examples

			a(15) = 8 because we have [11, 4], [6, 5, 4], [6, 4, 5], [5, 6, 4], [5, 4, 6], [4, 11], [4, 6, 5] and [4, 5, 6].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember;
          `if`(n=0, p!, `if`((i-4)*(i+5)/2 `if`(n<4, 0, b(n-4$2, 1)):
    seq(a(n), n=0..55);  # Alois P. Heinz, Nov 25 2020
  • Mathematica
    nmax = 52; CoefficientList[Series[Sum[k! x^(k (k + 7)/2)/Product[1 - x^j, {j, 1, k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=1} k! * x^(k*(k + 7)/2) / Product_{j=1..k-1} (1 - x^j).
Previous Showing 11-20 of 22 results. Next