cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 115 results. Next

A269467 T(n,k)=Number of length-n 0..k arrays with no repeated value equal to the previous repeated value.

Original entry on oeis.org

2, 3, 4, 4, 9, 6, 5, 16, 24, 10, 6, 25, 60, 66, 14, 7, 36, 120, 228, 174, 22, 8, 49, 210, 580, 852, 462, 30, 9, 64, 336, 1230, 2780, 3180, 1206, 46, 10, 81, 504, 2310, 7170, 13300, 11796, 3150, 62, 11, 100, 720, 3976, 15834, 41730, 63420, 43644, 8166, 94, 12, 121
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2016

Keywords

Comments

Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..6....24.....60.....120......210.......336.......504........720........990
.10....66....228.....580.....1230......2310......3976.......6408.......9810
.14...174....852....2780.....7170.....15834.....31304......56952......97110
.22...462...3180...13300....41730....108402....246232.....505800.....960750
.30..1206..11796...63420...242370....741090...1934856....4488696....9499590
.46..3150..43644..301780..1405530...5060706..15190840...39808584...93880710
.62..8166.160980.1433180..8139570..34523202.119174216..352838520..927352710
.94.21150.592572.6795700.47082330.235304034.934305400.3125681352.9156504150
The conjectures regarding the recursions for column k are correct (see links) - Sela Fried, Oct 29 2024.

Examples

			Some solutions for n=6 k=4
..2. .0. .3. .1. .1. .1. .2. .0. .1. .0. .3. .0. .3. .2. .4. .1
..4. .3. .1. .1. .2. .0. .0. .2. .0. .2. .3. .1. .4. .0. .3. .4
..3. .2. .0. .0. .0. .0. .2. .2. .1. .0. .4. .2. .4. .0. .4. .3
..3. .0. .4. .2. .1. .1. .2. .1. .3. .4. .1. .4. .2. .4. .4. .1
..1. .3. .4. .4. .0. .4. .4. .3. .4. .1. .4. .1. .2. .2. .0. .0
..0. .1. .3. .3. .4. .3. .2. .4. .1. .3. .2. .2. .1. .4. .1. .2
		

Crossrefs

Column 1 is A027383.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A007531(n+2).

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) -2*a(n-3)
k=2: a(n) = 3*a(n-1) +2*a(n-2) -8*a(n-3)
k=3: a(n) = 5*a(n-1) -18*a(n-3)
k=4: a(n) = 7*a(n-1) -4*a(n-2) -32*a(n-3)
k=5: a(n) = 9*a(n-1) -10*a(n-2) -50*a(n-3)
k=6: a(n) = 11*a(n-1) -18*a(n-2) -72*a(n-3)
k=7: a(n) = 13*a(n-1) -28*a(n-2) -98*a(n-3)
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 4*n^2 + n
n=5: a(n) = n^5 + 5*n^4 + 7*n^3 + 2*n^2 - n
n=6: a(n) = n^6 + 6*n^5 + 11*n^4 + 4*n^3 - n^2 + n
n=7: a(n) = n^7 + 7*n^6 + 16*n^5 + 8*n^4 - n^3 - n

A269537 T(n,k)=Number of length-n 0..k arrays with no repeated value differing from the previous repeated value by other than one.

Original entry on oeis.org

2, 3, 4, 4, 9, 6, 5, 16, 24, 10, 6, 25, 60, 64, 14, 7, 36, 120, 222, 164, 22, 8, 49, 210, 568, 804, 418, 30, 9, 64, 336, 1210, 2648, 2878, 1048, 46, 10, 81, 504, 2280, 6890, 12214, 10192, 2614, 62, 11, 100, 720, 3934, 15324, 38878, 55836, 35812, 6468, 94, 12, 121
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2016

Keywords

Comments

Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..6....24.....60.....120......210.......336.......504........720........990
.10....64....222.....568.....1210......2280......3934.......6352.......9738
.14...164....804....2648.....6890.....15324.....30464......55664......95238
.22...418...2878...12214....38878....102202....234358.....485038.....926854
.30..1048..10192...55836...217714....677200...1792788....4205812....8981446
.46..2614..35812..253418..1211476...4462414..13648124...36313762...86704348
.62..6468.125012.1143256..6705102..29265308.103462888..312366672..834223586
.94.15942.434110.5131592.36939610.191134204.781425950.2678039200.8002547722

Examples

			Some solutions for n=6 k=4
..2. .4. .4. .0. .3. .0. .0. .3. .1. .2. .2. .3. .2. .1. .4. .0
..4. .3. .1. .3. .2. .2. .3. .0. .2. .0. .1. .0. .1. .3. .0. .2
..3. .2. .0. .1. .1. .4. .1. .0. .3. .3. .3. .1. .3. .0. .4. .2
..2. .1. .1. .2. .1. .0. .3. .2. .3. .4. .1. .0. .4. .2. .1. .4
..0. .3. .1. .2. .0. .1. .1. .4. .2. .1. .1. .1. .1. .4. .1. .0
..2. .1. .2. .4. .2. .1. .2. .0. .0. .2. .2. .2. .3. .2. .4. .4
		

Crossrefs

Column 1 is A027383.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A007531(n+2).

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) -2*a(n-3)
k=2: a(n) = 4*a(n-1) -a(n-2) -10*a(n-3) +6*a(n-4) +4*a(n-5)
k=3: a(n) = 7*a(n-1) -9*a(n-2) -23*a(n-3) +31*a(n-4) +33*a(n-5)
k=4: a(n) = 14*a(n-1) -65*a(n-2) +80*a(n-3) +163*a(n-4) -280*a(n-5) -208*a(n-6)
k=5: [order 7]
k=6: [order 9]
k=7: [order 9]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 3*n^2 + 2*n
n=5: a(n) = n^5 + 5*n^4 + 4*n^3 + 6*n^2 - 2*n
n=6: a(n) = n^6 + 6*n^5 + 5*n^4 + 12*n^3 - 6*n^2 + 6*n - 2
n=7: a(n) = n^7 + 7*n^6 + 6*n^5 + 20*n^4 - 12*n^3 + 22*n^2 - 18*n + 4

A349795 Number of non-strict integer partitions of n that are constant or whose part multiplicities, except possibly the first and last, are all even.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 7, 9, 14, 17, 24, 29, 39, 46, 61, 69, 90, 103, 131, 147, 185, 207, 259, 286, 355, 391, 482, 528, 644, 706, 858, 933, 1129, 1228, 1477, 1597, 1916, 2072, 2473, 2668, 3168, 3415, 4047, 4347, 5133, 5514, 6488, 6952, 8162, 8738, 10226, 10936
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2021

Keywords

Comments

Also the number of weakly alternating non-strict integer partitions of n, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence looks at the somewhat degenerate case where no strict increases are allowed. Equivalently, these are partitions that are weakly alternating but not strongly alternating.

Examples

			The a(2) = 1 through a(8) = 14 partitions:
  (11)  (111)  (22)    (221)    (33)      (322)      (44)
               (211)   (311)    (222)     (331)      (332)
               (1111)  (2111)   (411)     (511)      (422)
                       (11111)  (2211)    (2221)     (611)
                                (3111)    (4111)     (2222)
                                (21111)   (22111)    (3221)
                                (111111)  (31111)    (3311)
                                          (211111)   (5111)
                                          (1111111)  (22211)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

This is the restriction of A349060 to non-strict partitions.
The complement in non-strict partitions is A349796.
Permutations of prime factors of this type are counted by A349798.
The ordered version (compositions) is A349800, ranked by A349799.
These partitions are ranked by A350137.
A000041 counts integer partitions, non-strict A047967.
A001250 counts alternating permutations, complement A348615.
A025047 counts alternating compositions, also A025048 and A025049.
A096441 counts weakly alternating 0-appended partitions.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A349053 counts non-weakly alternating compositions, complement A349052.
A349061 counts non-weakly alternating partitions, ranked by A349794.
A349801 counts non-alternating partitions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!UnsameQ@@#&&(SameQ@@#||And@@EvenQ/@Take[Length/@Split[#],{2,-2}])&]],{n,0,30}]

Formula

a(n > 0) = A349060(n) - A065033(n) = A349060(n) - floor(n/2).
a(n) = A047967(n) - A349796(n).

A349796 Number of non-strict integer partitions of n with at least one part of odd multiplicity that is not the first or last.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 8, 15, 23, 37, 52, 80, 109, 156, 208, 289, 378, 509, 654, 865, 1098, 1425, 1789, 2290, 2852, 3603, 4450, 5569, 6830, 8467, 10321, 12701, 15393, 18805, 22678, 27535, 33057, 39908, 47701, 57304, 68226, 81572, 96766, 115212, 136201
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2021

Keywords

Comments

Also the number of non-weakly alternating non-strict integer partitions of n, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence involves the somewhat degenerate case where no strict increases are allowed.

Examples

			The a(7) = 1 through a(11) = 15 partitions:
  (3211)  (4211)   (3321)    (5311)     (4322)
          (32111)  (4311)    (6211)     (4421)
                   (5211)    (32221)    (5411)
                   (42111)   (33211)    (6311)
                   (321111)  (43111)    (7211)
                             (52111)    (42221)
                             (421111)   (43211)
                             (3211111)  (53111)
                                        (62111)
                                        (322211)
                                        (332111)
                                        (431111)
                                        (521111)
                                        (4211111)
                                        (32111111)
		

Crossrefs

Counting all non-strict partitions gives A047967.
Signatures of this type are counted by A274230, complement A027383.
The strict instead of non-strict version is A347548, ranked by A350352.
The version for compositions allowing strict is A349053, ranked by A349057.
Allowing strict partitions gives A349061, complement A349060.
The complement in non-strict partitions is A349795.
These partitions are ranked by A350140 = A349794 \ A005117.
A000041 = integer partitions, strict A000009.
A001250 = alternating permutations, complement A348615.
A003242 = Carlitz (anti-run) compositions.
A025047 = alternating compositions, ranked by A345167.
A025048/A025049 = directed alternating compositions.
A096441 = weakly alternating 0-appended partitions.
A345170 = partitions w/ an alternating permutation, ranked by A345172.
A349052 = weakly alternating compositions.
A349056 = weakly alternating permutations of prime indices.
A349798 = weakly but not strongly alternating permutations of prime indices.

Programs

  • Mathematica
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[IntegerPartitions[n],!whkQ[#]&&!whkQ[-#]&&!UnsameQ@@#&]],{n,0,30}]

Formula

a(n) = A349061(n) - A347548(n).

A351008 Alternately strict partitions. Number of even-length integer partitions y of n such that y_i > y_{i+1} for all odd i.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 19, 23, 28, 34, 41, 50, 60, 71, 85, 102, 120, 142, 168, 197, 231, 271, 316, 369, 429, 497, 577, 668, 770, 888, 1023, 1175, 1348, 1545, 1767, 2020, 2306, 2626, 2990, 3401, 3860, 4379, 4963, 5616, 6350, 7173, 8093
Offset: 0

Views

Author

Gus Wiseman, Jan 31 2022

Keywords

Comments

Write the series in the g.f. given below as Sum_{k >= 0} q^(1 + 3 + 5 + ... + 2*k-1 + 2*k)/Product_{i = 1..2*k} 1 - q^i. Since 1/Product_{i = 1..2*k} 1 - q^i is the g.f. for partitions with parts <= 2*k, we see that the k-th summand of the series is the g.f. for partitions with largest part 2*k in which every odd number less than 2*k appears at least once as a part. The partitions of this type are conjugate to (and hence equinumerous with) the partitions (y_1, y_2, ..., y_{2*k}) of even length 2*k having strict decrease y_i > y_(i+1) for all odd i < 2*k. - Peter Bala, Jan 02 2024

Examples

			The a(3) = 1 through a(13) = 12 partitions (A..C = 10..12):
  21   31   32   42   43   53     54     64     65     75     76
            41   51   52   62     63     73     74     84     85
                      61   71     72     82     83     93     94
                           3221   81     91     92     A2     A3
                                  4221   4321   A1     B1     B2
                                         5221   4331   4332   C1
                                                5321   5331   5332
                                                6221   5421   5431
                                                       6321   6331
                                                       7221   6421
                                                              7321
                                                              8221
a(10) = 6: the six partitions 64, 73, 82, 91, 4321 and 5221 listed above have conjugate partitions 222211, 2221111, 22111111, 211111111, 4321 and 43111, These are the partitions of 10 with largest part L even and such that every odd number less than L appears at least once as a part. - _Peter Bala_, Jan 02 2024
		

Crossrefs

The version for equal instead of unequal is A035363.
The alternately equal and unequal version is A035457, any length A351005.
This is the even-length case of A122129, opposite A122135.
The odd-length version appears to be A122130.
The alternately unequal and equal version is A351007, any length A351006.

Programs

  • Maple
    series(add(q^(n*(n+2))/mul(1 - q^k, k = 1..2*n), n = 0..10), q, 141):
    seq(coeftayl(%, q = 0, n), n = 0..140); # Peter Bala, Jan 03 2025
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&And@@Table[#[[i]]!=#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}]

Formula

Conjecture: a(n+1) = A122129(n+1) - A122130(n). - Gus Wiseman, Feb 21 2022
G.f.: Sum_{n >= 0} q^(n*(n+2))/Product_{k = 1..2*n} 1 - q^k = 1 + q^3 + q^4 + 2*q^5 + 2*q^6 + 3*q^7 + 4*q^8 + 5*q^9 + 6*q^10 + .... - Peter Bala, Jan 02 2024

A247619 Start with a single pentagon; at n-th generation add a pentagon at each expandable vertex; a(n) is the sum of all label values at n-th generation. (See comment for construction rules.)

Original entry on oeis.org

1, 6, 16, 36, 66, 116, 186, 296, 446, 676, 986, 1456, 2086, 3036, 4306, 6216, 8766, 12596, 17706, 25376, 35606, 50956, 71426, 102136, 143086, 204516, 286426, 409296, 573126, 818876, 1146546, 1638056, 2293406, 3276436, 4587146, 6553216, 9174646, 13106796
Offset: 0

Views

Author

Kival Ngaokrajang, Sep 21 2014

Keywords

Comments

Inspired by A061777, let us assign the label "1" to an origin pentagon; at the n-th generation add a pentagon at each expandable vertex, i.e., a vertex such that the new added generations will not overlap existing ones, but overlapping among new generations is allowed. Each nonoverlapping pentagon will have the same label value as its predecessor; for the overlapping ones, the label value will be sum of label values of predecessors. The pentagon count is A005891. See illustration. [Edited for grammar/style by Peter Munn, Jan 14 2023]

Crossrefs

See A358632 for a related concept.

Programs

  • Mathematica
    LinearRecurrence[{2, 1, -4, 2}, {1, 6, 16, 36}, 50] (* Paolo Xausa, Aug 21 2024 *)
  • PARI
    {
    b=0;a=1;print1(1,", ");
    for (n=0,50,
         b=b+2^floor(n/2);
         a=a+5*b;
         print1(a,", ")
        )
    }
    
  • PARI
    Vec(-(2*x^3+3*x^2+4*x+1)/((x-1)^2*(2*x^2-1)) + O(x^100)) \\ Colin Barker, Sep 21 2014

Formula

a(0) = 1, for n >= 1, a(n) = 5*A027383(n-1) + a(n-1). [Offset corrected by Peter Munn, Apr 20 2023]
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+2*a(n-4). G.f.: -(2*x^3+3*x^2+4*x+1) / ((x-1)^2*(2*x^2-1)). - Colin Barker, Sep 21 2014

Extensions

More terms from Colin Barker, Sep 21 2014

A269678 T(n,k)=Number of length-n 0..k arrays with no repeated value differing from the previous repeated value by other than plus or minus one modulo k+1.

Original entry on oeis.org

2, 3, 4, 4, 9, 6, 5, 16, 24, 10, 6, 25, 60, 66, 14, 7, 36, 120, 224, 174, 22, 8, 49, 210, 570, 820, 462, 30, 9, 64, 336, 1212, 2670, 2976, 1206, 46, 10, 81, 504, 2282, 6918, 12390, 10700, 3150, 62, 11, 100, 720, 3936, 15358, 39156, 57030, 38224, 8166, 94, 12, 121
Offset: 1

Views

Author

R. H. Hardin, Mar 03 2016

Keywords

Comments

Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..6....24.....60.....120......210.......336.......504........720........990
.10....66....224.....570.....1212......2282......3936.......6354.......9740
.14...174....820....2670.....6918.....15358.....30504......55710......95290
.22...462...2976...12390....39156....102606....234912.....485766.....927780
.30..1206..10700...57030...220050....681254...1799256....4215510....8995310
.46..3150..38224..260790..1229292...4499278..13716480...36430614...86891980
.62..8166.135780.1185990..6832518..29579382.104139336..313684470..836599530
.94.21150.480176.5368470.37810116.193688894.787814400.2692218006.8031245540

Examples

			Some solutions for n=6 k=4
..0. .1. .4. .0. .2. .4. .0. .4. .4. .4. .4. .4. .3. .0. .4. .4
..2. .3. .2. .3. .3. .1. .0. .2. .4. .2. .0. .3. .3. .3. .0. .2
..0. .2. .4. .2. .4. .3. .4. .1. .0. .3. .3. .2. .0. .0. .3. .3
..3. .3. .1. .1. .1. .4. .1. .2. .2. .3. .2. .1. .4. .4. .3. .4
..0. .3. .3. .0. .4. .2. .0. .3. .0. .2. .1. .0. .3. .4. .4. .1
..1. .2. .4. .2. .4. .2. .4. .1. .4. .0. .2. .1. .4. .3. .2. .3
		

Crossrefs

Column 1 is A027383.
Column 2 is A269461.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A007531(n+2).

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) -2*a(n-3)
k=2: a(n) = 3*a(n-1) +2*a(n-2) -8*a(n-3)
k=3: a(n) = 5*a(n-1) -a(n-2) -15*a(n-3)
k=4: a(n) = 7*a(n-1) -6*a(n-2) -24*a(n-3)
k=5: a(n) = 9*a(n-1) -13*a(n-2) -35*a(n-3)
k=6: a(n) = 11*a(n-1) -22*a(n-2) -48*a(n-3)
k=7: a(n) = 13*a(n-1) -33*a(n-2) -63*a(n-3)
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 3*n^2 + 2*n + 2 for n>1
n=5: a(n) = n^5 + 5*n^4 + 4*n^3 + 6*n^2 + 4*n - 2 for n>1
n=6: a(n) = n^6 + 6*n^5 + 5*n^4 + 12*n^3 + 6*n^2 + 6 for n>1
n=7: a(n) = n^7 + 7*n^6 + 6*n^5 + 20*n^4 + 8*n^3 + 10*n^2 + 12*n - 10 for n>1

A349794 Numbers whose prime signature has an odd term other than the first or last.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 102, 105, 110, 114, 120, 130, 132, 138, 140, 150, 154, 156, 165, 168, 170, 174, 182, 186, 190, 195, 204, 210, 220, 222, 228, 230, 231, 238, 240, 246, 255, 258, 260, 264, 266, 270, 273, 276, 280, 282, 285, 286, 290, 294, 300, 308
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2021

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.
Also numbers whose multiset of prime factors is not weakly alternating, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence looks at the somewhat degenerate case where no strict decreases are allowed.

Examples

			The terms and their prime indices begin:
   30: {1,2,3}
   42: {1,2,4}
   60: {1,1,2,3}
   66: {1,2,5}
   70: {1,3,4}
   78: {1,2,6}
   84: {1,1,2,4}
  102: {1,2,7}
  105: {2,3,4}
  110: {1,3,5}
  114: {1,2,8}
  120: {1,1,1,2,3}
  130: {1,3,6}
  132: {1,1,2,5}
  138: {1,2,9}
		

Crossrefs

The complement for compositions is A025047, ranked by A345167.
Signatures of this type are counted by A274230, complement A027383.
The strong case is A289553, complement A167171.
The strong case for compositions is A345192, ranked by A345168.
The version for compositions is A349053, ranked by A349057.
These partitions are counted by A349061, complement A349060, strong A349801.
The non-strict case is counted by A349795.
A001250 counts alternating permutations, complement A348615.
A096441 counts weakly alternating partitions if 0 is appended.
A345164 counts alternating permutations of prime indices, weak A349056.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A349052 counts weakly alternating compositions.
A349059 counts weakly alternating ordered factorizations, strong A348610.

Programs

  • Mathematica
    Select[Range[100],PrimeNu[#]>1&&!And@@EvenQ/@Take[Last/@FactorInteger[#],{2,-2}]&]

A351012 Number of even-length integer partitions y of n such that y_i = y_{i+1} for all even i.

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 5, 6, 9, 10, 13, 16, 21, 24, 29, 35, 43, 50, 60, 70, 83, 97, 113, 132, 156, 178, 206, 239, 275, 316, 365, 416, 477, 545, 620, 706, 806, 912, 1034, 1173, 1326, 1496, 1691, 1902, 2141, 2410, 2704, 3034, 3406, 3808, 4261, 4765, 5317, 5932, 6617
Offset: 0

Views

Author

Gus Wiseman, Feb 03 2022

Keywords

Examples

			The a(2) = 1 through a(8) = 9 partitions:
  (11)  (21)  (22)    (32)    (33)      (43)      (44)
              (31)    (41)    (42)      (52)      (53)
              (1111)  (2111)  (51)      (61)      (62)
                              (3111)    (2221)    (71)
                              (111111)  (4111)    (2222)
                                        (211111)  (3221)
                                                  (5111)
                                                  (311111)
                                                  (11111111)
		

Crossrefs

The ordered version (compositions) is A027383(n-2).
For odd instead of even indices we have A035363, any length A351004.
The version for unequal parts appears to be A122134, any length A122135.
This is the even-length case of A351003.
Requiring inequalities at odd positions gives A351007, any length A351006.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&And@@Table[#[[i]]==#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,30}]

A007179 Dual pairs of integrals arising from reflection coefficients.

Original entry on oeis.org

0, 1, 1, 4, 6, 16, 28, 64, 120, 256, 496, 1024, 2016, 4096, 8128, 16384, 32640, 65536, 130816, 262144, 523776, 1048576, 2096128, 4194304, 8386560, 16777216, 33550336, 67108864, 134209536, 268435456, 536854528, 1073741824, 2147450880, 4294967296, 8589869056
Offset: 0

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Feb 26 2022: (Start)
Also the number of integer compositions of n with at least one odd part. For example, the a(1) = 1 through a(5) = 16 compositions are:
  (1)  (1,1)  (3)      (1,3)      (5)
              (1,2)    (3,1)      (1,4)
              (2,1)    (1,1,2)    (2,3)
              (1,1,1)  (1,2,1)    (3,2)
                       (2,1,1)    (4,1)
                       (1,1,1,1)  (1,1,3)
                                  (1,2,2)
                                  (1,3,1)
                                  (2,1,2)
                                  (2,2,1)
                                  (3,1,1)
                                  (1,1,1,2)
                                  (1,1,2,1)
                                  (1,2,1,1)
                                  (2,1,1,1)
                                  (1,1,1,1,1)
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A309748.
Odd bisection is A000302.
Even bisection is A006516 = 2^(n-1)*(2^n - 1).
The complement is counted by A077957, internal version A027383.
The internal case is A274230, even bisection A134057.
A000045(n-1) counts compositions without odd parts, non-singleton A077896.
A003242 counts Carlitz compositions.
A011782 counts compositions.
A034871, A097805, and A345197 count compositions by alternating sum.
A052952 (or A074331) counts non-singleton compositions without even parts.

Programs

  • Magma
    [Floor(2^n/2-2^(n/2)*(1+(-1)^n)/4): n in [0..40]]; // Vincenzo Librandi, Aug 20 2011
    
  • Maple
    f := n-> if n mod 2 = 0 then 2^(n-1)-2^((n-2)/2) else 2^(n-1); fi;
  • Mathematica
    LinearRecurrence[{2,2,-4},{0,1,1},30] (* Harvey P. Dale, Nov 30 2015 *)
    Table[2^(n-1)-If[EvenQ[n],2^(n/2-1),0],{n,0,15}] (* Gus Wiseman, Feb 26 2022 *)
  • PARI
    Vec(x*(1-x)/((1-2*x)*(1-2*x^2)) + O(x^50)) \\ Michel Marcus, Jan 28 2016

Formula

From Paul Barry, Apr 28 2004: (Start)
Binomial transform is (A000244(n)+A001333(n))/2.
G.f.: x*(1-x)/((1-2*x)*(1-2*x^2)).
a(n) = 2*a(n-1)+2*a(n-2)-4*a(n-3).
a(n) = 2^n/2-2^(n/2)*(1+(-1)^n)/4. (End)
G.f.: (1+x*Q(0))*x/(1-x), where Q(k)= 1 - 1/(2^k - 2*x*2^(2*k)/(2*x*2^k - 1/(1 + 1/(2*2^k - 8*x*2^(2*k)/(4*x*2^k + 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 22 2013
a(n) = A011782(n+2) - A077957(n) - Gus Wiseman, Feb 26 2022
Previous Showing 61-70 of 115 results. Next