cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A322967 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of distinct products Product_{j=1..k} b_j with 1 <= b_j<= n.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 9, 5, 1, 6, 15, 16, 14, 6, 1, 7, 21, 25, 30, 18, 7, 1, 8, 28, 36, 55, 40, 25, 8, 1, 9, 36, 49, 91, 75, 65, 30, 9, 1, 10, 45, 64, 140, 126, 140, 80, 36, 10, 1, 11, 55, 81, 204, 196, 266, 175, 100, 42, 11
Offset: 1

Views

Author

Seiichi Manyama, Dec 31 2018

Keywords

Examples

			In case of (n,k) = (3,2):
  | 1  2  3
--+--------
1 | 1, 2, 3
2 | 2, 4, 6
3 | 3, 6, 9
Distinct products are 1,2,3,4,6,9. So A(3,2) = 6.
Square array begins:
   1,  1,   1,   1,   1,   1,    1,    1,    1, ...
   2,  3,   4,   5,   6,   7,    8,    9,   10, ...
   3,  6,  10,  15,  21,  28,   36,   45,   55, ...
   4,  9,  16,  25,  36,  49,   64,   81,  100, ...
   5, 14,  30,  55,  91, 140,  204,  285,  385, ...
   6, 18,  40,  75, 126, 196,  288,  405,  550, ...
   7, 25,  65, 140, 266, 462,  750, 1155, 1705, ...
   8, 30,  80, 175, 336, 588,  960, 1485, 2200, ...
   9, 36, 100, 225, 441, 784, 1296, 2025, 3025, ...
		

Crossrefs

Columns 1-5 give A001477, A027424, A027425, A100437, A284988
Main diagonal gives A110713.

Programs

  • Mathematica
    Table[Length@ Union@ Flatten[TensorProduct @@ ConstantArray[Range@ #, k]] &[n - k + 1], {n, 11}, {k, n, 1, -1}] // Flatten (* Michael De Vlieger, Jan 01 2019 *)

A027417 Number of distinct products i*j with 0 <= i, j <= 2^n - 1.

Original entry on oeis.org

1, 2, 7, 26, 90, 340, 1238, 4647, 17578, 67592, 259768, 1004348, 3902357, 15202050, 59410557, 232483840, 911689012, 3581049040, 14081089288, 55439171531, 218457593223, 861617935051, 3400917861268, 13433148229639, 53092686926155, 209962593513292
Offset: 0

Views

Author

David Lambert (dlambert(AT)ichips.intel.com)

Keywords

Comments

This is a subsequence of A027384.

Examples

			For n = 2 we have a(2) = 7 because taking all products of the integers {0, 1, 2, 3 = 2^2 - 1} we get 7 distinct integers {0, 1, 2, 3, 4, 6, 9}.
		

References

  • R. P. Brent and H. T. Kung, The area-time complexity of binary multiplication, J. ACM 28 (1981), 521-534. Corrigendum: ibid 29 (1982), 904.
  • R. P. Brent, C. Pomerance, D. Purdum, and J. Webster, Algorithms for the multiplication table, Integers 21 (2021), paper #A92.

Crossrefs

Programs

  • Mathematica
    Array[Length@ Union[Times @@@ Tuples[Range[0, 2^# - 1], {2}]] &, 12, 0] (* Michael De Vlieger, May 27 2018 *)
  • Python
    def A027417(n): return len({i*j for i in range(1,1<Chai Wah Wu, Oct 13 2023

Formula

a(n) = A027384(2^n-1). - R. J. Mathar, Jun 09 2016

Extensions

Corrected offset, added entries a(13)-a(25) and included a reference to a paper by Brent and Kung (1982) that gives the entries through a(17) by Richard P. Brent, Aug 20 2012

A219729 Sum_{x <= n} largest divisor of x that is <= sqrt(x).

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 11, 14, 16, 17, 20, 21, 23, 26, 30, 31, 34, 35, 39, 42, 44, 45, 49, 54, 56, 59, 63, 64, 69, 70, 74, 77, 79, 84, 90, 91, 93, 96, 101, 102, 108, 109, 113, 118, 120, 121, 127, 134, 139, 142, 146, 147, 153, 158, 165, 168, 170, 171, 177, 178
Offset: 1

Views

Author

Michel Marcus, Nov 26 2012

Keywords

Comments

G. Tenenbaum proved that limit(log(a(n)/n^(3/2)))/log(log(n)) is -b with b = 1-(1+loglog 2)/log 2 = 0.08607... (same constant as in A027424 comment) (théorème 1).

Crossrefs

Programs

  • Mathematica
    t = Table[d = Divisors[n]; d[[Ceiling[Length[d]/2]]], {n, 100}]; Accumulate[t] (* T. D. Noe, Nov 26 2012 *)

A126959 a(k) = k! * lim_{n->oo} card({ i*j; i=1..k, j=1..n })/n.

Original entry on oeis.org

1, 3, 12, 58, 352, 2376, 19296, 168912, 1670976, 18000000, 219916800, 2781561600, 39605760000, 584889984000, 9253091635200, 154909552896000, 2834240274432000, 52918877491200000, 1074184895250432000
Offset: 1

Views

Author

M. F. Hasler, Mar 19 2007, Mar 22 2007

Keywords

Comments

a(k) = k! card { i*j, i<=k, j<=k# } / k# where k# = lcm(1,2,3...,k) a(k)/(k+1)! <= 1/2 for all k.

Examples

			a(2)=3/2 since #{ i*j, i=1..2, j=1..2 } / 2 = #{ 1,2, 2,4 } / 2 = #{1,2,4} / 2.
a(3)=2 since #{ i*j, i=1..3, j=1..6 } / 6 = #{ 1,2,3,4,5,6, 2,4,6,8,10,12, 3,6,9,12,15,18 } / 6 = #{ 1,2,3,4,5,6,8,9,10,12,15,18 } / 6.
		

References

  • A. A. Buchstab, "Asymptotic estimates of a general number-theoretic function", Mat. Sbornik 44 (1937), 1239-1246.

Crossrefs

Programs

  • Maple
    p:=proc(n) option remember;local s,t,i,j: s:=1; t:={}:
    for i from n-1 by -1 to 1+n/(min@op@eval@numtheory[factorset])(n) do
    t := t union { ilcm(n,i)/n };
    t := select( x-> numtheory[divisors](x) intersect t = { x }, t ):
    for j in combinat[powerset](t) do s := s+(-1)^nops(j)/ilcm(op(j)) od:
    od; s/n end:
    A126959 := k -> k!*add( p(n), n=1..k);
  • PARI
    p(n)={ local( cnt=lcm(vector(n-1,j,j)), L=vector(cnt,j,n*j), s=cnt ); forstep( i=n-1, n/factor(n)[1,1]+1, -1, forstep( j=lcm(n,i)/n, #L, lcm(n,i)/n, if( L[j] && (L[j] % i == 0), L[j]=0; cnt--)); s+=cnt ); s/#L/n } a=vector(16); a[1]=1; for( k=2, #a, a[k]=k*a[k-1]+k!*p(k));

A184677 Number of numbers <= p^2 with largest prime factor <= p, where p is the n-th prime; a(0) = 1.

Original entry on oeis.org

1, 3, 7, 16, 30, 61, 88, 138, 177, 248, 361, 423, 569, 690, 777, 924, 1137, 1370, 1495, 1765, 1979, 2129, 2452, 2711, 3075, 3563, 3871, 4078, 4412, 4639, 4996, 6027, 6427, 6988, 7272, 8181, 8494, 9135, 9803, 10320, 11031, 11768, 12140, 13315, 13713, 14330
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 27 2011

Keywords

Comments

a(n) = #{m: m<=A001248(n) and A006530(m)<=A000040(n)} for n > 0.

Examples

			a(1) = #{1,2,4} = 3 = number of binary powers <= 4;
a(2) = #{1,2,3,4,6,8,9} = 7 = number of 3-smooth numbers <= 9;
a(3) = #{1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25} = 16 = number of 5-smooth numbers <= 25.
		

Crossrefs

Programs

A263996 Smallest possible cardinality of the union of the set of pairwise sums and the set of pairwise products from a set of n positive integers.

Original entry on oeis.org

1, 4, 7, 11, 15, 20, 26, 30, 36, 44, 49, 57, 64, 71, 80, 86, 96, 104, 112, 121, 131, 141, 150, 160, 169, 179, 190, 200, 212, 222, 235, 248, 260, 272, 283, 296, 307, 320, 335, 348, 360, 371
Offset: 1

Views

Author

Hugo Pfoertner, Nov 15 2015

Keywords

Comments

The November 2015 - February 2016 round of Al Zimmermann's programming contests asked for optimal sets producing a(40), a(80), a(120), ..., a(1000).

Examples

			a(1) = 1 because for the set {2} the union of {2+2} and {2*2} = {4}.
a(7) = 26: The set {1,2,3,4,6,8,12} has the set of pairwise sums {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,20,24} and the set of pairwise products {1,2,3,4,6,8,9,12,16,18,24,32,36,48,64,72,96,144}. The cardinality of the union of the two sets, {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,20,24,32,36,48,64,72,96,144}, is 26. This is the first nontrivial case with a(n) < A263995(n), which uses the set {1..n}.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer-Verlag New York, 2004. Problem F18.

Crossrefs

A281505 Numbers of the form y^2 - x^2 such that x^2 + y^2 is a prime and 0 < x < y.

Original entry on oeis.org

3, 5, 9, 11, 15, 19, 21, 25, 29, 35, 39, 45, 49, 51, 55, 59, 61, 65, 69, 71, 75, 79, 85, 91, 95, 99, 101, 105, 115, 121, 129, 131, 139, 141, 145, 159, 165, 169, 171, 175, 181, 189, 195, 199, 201, 205, 209, 215, 219, 221
Offset: 1

Views

Author

Thomas Ordowski, Jan 23 2017

Keywords

Comments

What is the natural density of this set of these numbers?
There are 204 terms up to 10^3, 1849 up to 10^4, 16881 up to 10^5, 160194 up to 10^6, 1531730 up to 10^7, and 14766494 up to 10^8. - Charles R Greathouse IV, Jan 23 2017
Numbers of the form s*t where 0 < s < t and (s^2 + t^2)/2 is prime. - Robert Israel, Jan 23 2017

Crossrefs

Cf. A002144, A048161 is a subsequence, A070079 contains the same numbers.

Programs

  • Maple
    filter:= proc(n)
      ormap(s -> isprime((s^2 + (n/s)^2)/2), select(s -> s^2Robert Israel, Jan 23 2017
  • Mathematica
    filter[n_] := AnyTrue[Select[Divisors[n], #^2 < n & ], PrimeQ[(#^2 + (n/#)^2)/2] & ];
    Select[Range[1, 1000, 2], filter] (* Jean-François Alcover, Nov 27 2017, after Robert Israel *)
  • PARI
    list(lim)=my(v=List()); for(a=1,sqrtint(lim\=1), for(x=1,(lim-a^2)\2\a, if(isprime((x+a)^2+x^2), listput(v,(x+a)^2-x^2)))); Set(v) \\ Charles R Greathouse IV, Jan 23 2017

Formula

a(n) = n(log n)^c /(log log n)^O(1), where c = 1 - (1 + log log 2)/log 2 = 0.086... Cf. A027424. - Conjectured by Carl Pomerance, Jan 25 2017

Extensions

More terms from Altug Alkan, Jan 23 2017
a(17)-a(50) from Charles R Greathouse IV, Jan 23 2017

A284988 Number of distinct products i*j*k*l*m for 1 <= i <= j <= k <= l <= m <= n.

Original entry on oeis.org

1, 6, 21, 36, 91, 126, 266, 336, 441, 546, 994, 1120, 1890, 2184, 2562, 2856, 4482, 4932, 7392, 8052, 9042, 10032, 14377, 15092, 17237, 18887, 20812, 22297, 30635, 31856, 42783, 45240, 49023, 52806, 57707, 59436, 77623, 83083, 89180, 92365, 118188, 122248, 154188
Offset: 1

Views

Author

Seiichi Manyama, Apr 07 2017

Keywords

Crossrefs

A321165 Sum of distinct products i*j with 1 <= i, j <= n.

Original entry on oeis.org

1, 7, 25, 61, 136, 244, 440, 680, 1022, 1472, 2198, 2882, 4065, 5241, 6681, 8265, 10866, 13116, 16726, 19786, 23566, 27922, 34270, 38902, 45502, 52600, 60430, 68326, 80941, 89671, 105047, 116855, 130913, 146519, 163214, 177002, 203013, 224673, 247605, 268005, 303306
Offset: 1

Views

Author

Seiichi Manyama, Jan 10 2019

Keywords

Examples

			a(2) = 1 + 2 + 4 = 7.
a(3) = 1 + 2 + 3 + 4 + 6 + 9 = 25.
		

Crossrefs

Column 2 of A321163.
Cf. A027424.

Programs

  • PARI
    a(n) = vecsum(setbinop((x, y)->x*y, vector(n, i, i); )); \\ Michel Marcus, Jan 10 2019

Formula

a(p) = a(p - 1) + p ^ 2 * (p + 1) / 2 for prime p. - David A. Corneth, Jan 10 2019

A334454 Number of distinct composite numbers in the n X n multiplication table.

Original entry on oeis.org

0, 1, 3, 6, 10, 14, 20, 25, 31, 37, 47, 53, 65, 73, 82, 90, 106, 115, 133, 143, 155, 167, 189, 199, 215, 229, 244, 257, 285, 297, 327, 342, 360, 378, 398, 411, 447, 467, 488, 504, 544, 561, 603, 623, 644, 668, 714, 731, 762, 784, 811, 834, 886
Offset: 1

Views

Author

Charles Kusniec, Sep 08 2020

Keywords

Comments

Number of distinct products i*j for 2<=i<=j<=n. - Chai Wah Wu, Oct 14 2023

Examples

			There are a(7) = 20 distinct composite numbers in the 7x7 multiplication table:
1   2   3   4   5   6   7
    4*  6*  8* 10* 12  14*
        9* 12* 15* 18* 21*
           16* 20* 24* 28*
               25* 30* 35*
                   36* 42*
                       49*
		

Crossrefs

Programs

  • Maple
    A334454 := proc(n)
        local dcom,i,j;
        dcom := {} ;
        for i from 1 to n do
            for j from 1 to i do
                if not isprime(i*j) and i*j> 1 then
                    dcom := dcom union {i*j} ;
                end if;
            end do:
        end do:
        print(n,dcom) ;
        nops(dcom) ;
    end proc:
    seq(A334454(n),n=1..70) ; # R. J. Mathar, Oct 02 2020
  • Python
    def A334454(n): return len({i*j for i in range(2,n+1) for j in range(2,i+1)}) # Chai Wah Wu, Oct 14 2023
Previous Showing 21-30 of 36 results. Next