cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 63 results. Next

A383140 Triangle read by rows: the coefficients of polynomials (1/3^(m-n)) * Sum_{k=0..m} k^n * 2^(m-k) * binomial(m,k) in the variable m.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 2, 6, 1, 0, -6, 20, 12, 1, 0, -30, 10, 80, 20, 1, 0, 42, -320, 270, 220, 30, 1, 0, 882, -1386, -770, 1470, 490, 42, 1, 0, 954, 7308, -15064, 2800, 5180, 952, 56, 1, 0, -39870, 101826, -39340, -61992, 29820, 14364, 1680, 72, 1, 0, -203958, -40680, 841770, -666820, -86940, 139440, 34020, 2760, 90, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2025

Keywords

Examples

			f_n(m) = (1/3^(m-n)) * Sum_{k=0..m} k^n * 2^(m-k) * binomial(m,k).
f_0(m) = 1.
f_1(m) =    m.
f_2(m) =  2*m +   m^2.
f_3(m) =  2*m + 6*m^2 + m^3.
Triangle begins:
  1;
  0,   1;
  0,   2,    1;
  0,   2,    6,   1;
  0,  -6,   20,  12,   1;
  0, -30,   10,  80,  20,  1;
  0,  42, -320, 270, 220, 30, 1;
  ...
		

Crossrefs

Columns k=0..1 give A000007, A179929(n-1).
Row sums give A133494.
Alternating row sums give A212846.

Programs

  • PARI
    T(n, k) = sum(j=k, n, 3^(n-j)*stirling(n, j, 2)*stirling(j, k, 1));
    
  • Sage
    def a_row(n):
        s = sum(3^(n-k)*stirling_number2(n, k)*falling_factorial(x, k) for k in (0..n))
        return expand(s).list()
    for n in (0..10): print(a_row(n))

Formula

T(n,k) = Sum_{j=k..n} 3^(n-j) * Stirling2(n,j) * Stirling1(j,k).
T(n,k) = [x^k] Sum_{k=0..n} 3^(n-k) * Stirling2(n,k) * FallingFactorial(x,k).
E.g.f. of column k (with leading zeros): g(x)^k / k! with g(x) = log(1 + (exp(3*x) - 1)/3).

A067371 Arithmetic derivatives of 3-smooth numbers.

Original entry on oeis.org

0, 1, 1, 4, 5, 12, 6, 16, 32, 21, 44, 27, 80, 60, 112, 81, 192, 156, 108, 272, 216, 448, 384, 297, 640, 540, 405, 1024, 912, 756, 1472, 1296, 1053, 2304, 2112, 1836, 1458, 3328, 3024, 2592, 5120, 4800, 4320, 3645, 7424, 6912, 6156, 11264, 5103, 10752
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 20 2002, revised: Jul 19 2003

Keywords

Examples

			a(18) = A003415(A003586(18)) = A003415(72) = A003415(2^3*3^2) = (3*3+2*2)*2^(3-1)*3^(2-1) = (9+4)*2^2*3^1 = 13*4*3 = 156.
a(27) = A003415(A003586(27)) = A003415(243) = A003415(2^0*3^5) = (3*0+2*5)*2^(0-1)*3^(5-1) = ((0+10)/2)*3^4 = 5*81 = 405.
		

Crossrefs

Programs

  • Mathematica
    s = {}; m = 12; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; ad[1] = 0; ad[n_] := n * Total @ (Last[#]/First[#] & /@ FactorInteger[n]); ad /@ Union[s] (* Amiram Eldar, Jan 29 2020 *)

Formula

A003415(2^i+3^j) = (3*i + 2*j) * 2^(i-1) * 3^(j-1), i, j >=0.
a(n) = A003415(A003586(n)).

A169585 A000004 preceded by 1, 3.

Original entry on oeis.org

1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Klaus Brockhaus, Dec 02 2009

Keywords

Comments

Inverse binomial transform of A016777; second inverse binomial transform of A053220; third inverse binomial transform of A027471 without first term; fourth inverse binomial transform of A081039.

Crossrefs

Cf. A000004 (zero sequence), A016777 (3*n+1), A053220 ((3*n-1)*2^(n-2)), A027471 ((n-1)*3^(n-2)), A081039 ((3*n+4)*4^(n-1), a(0)=1, a(1)=7), A130706 (1, 2, 0, 0, 0, ...), A166926 (1, 2, 4, 0, 0, 0, ...), A130779 (1, 1, 2, 0, 0, 0, ...).

Programs

  • PARI
    {concat([1, 3], vector(103))}

Formula

a(0) = 1, a(1) = 3, a(n) = 0 for n > 1.
G.f.: 1+3*x.
a(n) = 3^n mod 9. - Ridouane Oudra, Apr 09 2025

A081666 n*3^(n-1)+A081567(n).

Original entry on oeis.org

1, 4, 16, 62, 233, 855, 3083, 10978, 38746, 135924, 474955, 1655789, 5766389, 20080608, 69976772, 244166410, 853410637, 2988825507, 10490538559, 36905911166, 130139760590, 459970519296, 1629395348591, 5784362027257
Offset: 0

Views

Author

Paul Barry, Mar 26 2003

Keywords

Comments

Binomial transform of A081663.

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    LinearRecurrence[{11,-44,75,-45},{1,4,16,62},30] (* Harvey P. Dale, Aug 06 2022 *)

Formula

a(n)=A027471(n-1)+A081567(n) G.f.: (1-7x+16x^2-13x^3)/((3x - 1)^2(5x^2-5x+1))

A094951 a(n) = A081038(n) + A077616(n).

Original entry on oeis.org

6, 31, 144, 621, 2538, 9963, 37908, 140697, 511758, 1830519, 6456024, 22497669, 77590386, 265189059, 899198172, 3027619377, 10130328342, 33705582543, 111577100832, 367662044061, 1206427402746, 3943553157531, 12845313733284
Offset: 1

Views

Author

Gary W. Adamson, May 26 2004

Keywords

Comments

Performing the same operation but using the multiplier [1 0 0] yields [3^n 2*A027471(n+1) A077616(n)]. Example: M^4 * [1 0 0] = [81 216 324] where 324 = A077616(4) and 216/2 = 108 = A027471(5).

Examples

			a(3) = 144 = 81 + 63 = A081038(3) + A077616(3).
a(4) = 621 = 297 + 324 = A081038(4) + A077616(4).
a(4) = 621 since M^4 * [1 1 1] = [81 297 621] = [3^4 A081038(4), a(4)].
		

Crossrefs

Programs

  • GAP
    List([1..30], n-> 3^(n-2)*(9+7*n+2*n^2)); # G. C. Greubel, Jun 06 2019
  • Magma
    [3^(n-2)*(9+7*n+2*n^2): n in [1..30]]; // G. C. Greubel, Jun 06 2019
    
  • Mathematica
    a[n_] := (MatrixPower[{{3, 0, 0}, {2, 3, 0}, {1, 2, 3}}, n].{{1}, {1}, {1}})[[3, 1]]; Table[ a[n], {n, 23}] (* Robert G. Wilson v, Jun 05 2004 *)
    Table[3^(n-2)*(9+7*n+2*n^2), {n,1,30}] (* G. C. Greubel, Jun 06 2019 *)
  • PARI
    vector(30, n, 3^(n-2)*(9+7*n+2*n^2)) \\ G. C. Greubel, Jun 06 2019
    
  • Sage
    [3^(n-2)*(9+7*n+2*n^2) for n in (1..30)] # G. C. Greubel, Jun 06 2019
    

Formula

a(n) = A081038(n) + A077616(n).
Let M = the 3 X 3 matrix [3 0 0 / 2 3 0 / 1 2 3]; then M^n * [1 1 1] = [3^n A081038(n) a(n)], where a(n) - A081038(n) = A077616(n).
From Colin Barker, Nov 09 2012: (Start)
a(n) = 3^(n-2)*(9 + 7*n + 2*n^2).
a(n) = 9*a(n-1) - 27*a(n-2) + 27*a(n-3).
G.f.: x*(6 - 23*x + 27*x^2)/(1-3*x)^3. (End)
E.g.f.: -1 + (1 + 3*x + 2*x^2)*exp(3*x). - G. C. Greubel, Jun 06 2019

Extensions

Edited and extended by Robert G. Wilson v, Jun 05 2004

A118357 Triangle read by rows: T(n,k) is the number of ternary sequences of length n containing k subsequences 00 (n>=0, 0<=k<=max(0,n-1)).

Original entry on oeis.org

1, 3, 8, 1, 22, 4, 1, 60, 16, 4, 1, 164, 56, 18, 4, 1, 448, 188, 68, 20, 4, 1, 1224, 608, 248, 80, 22, 4, 1, 3344, 1920, 864, 312, 92, 24, 4, 1, 9136, 5952, 2928, 1152, 380, 104, 26, 4, 1, 24960, 18192, 9696, 4128, 1472, 452, 116, 28, 4, 1, 68192, 54976, 31536, 14400
Offset: 0

Views

Author

Emeric Deutsch, May 24 2006

Keywords

Comments

Sum of entries in row n is 3^n (A000244). T(n,0) = A028859(n). T(n,1) = A073388(n-2). Sum(k*T(n,k),k=0..n-1) = (n-1)*3^(n-2) (A027471).

Examples

			T(4,2) = 4 because we have 0001, 0002, 1000 and 2000.
Triangle starts:
1;
3;
8,1;
22,4,1;
60,16,4,1;
		

Crossrefs

Programs

  • Maple
    G:=(1+(1-t)*z)/(1-(2+t)*z-2*(1-t)*z^2): Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 12 do P[n]:=sort(coeff(Gser,z^n)) od: 1; for n from 1 to 12 do seq(coeff(P[n],t,j),j=0..n-1) od; # yields sequence in triangular form
  • Mathematica
    nn=15;a=1/(1-2x);b=x/(1-y x)+1;f[list_]:=Select[list,#>0&];Map[f,CoefficientList[Series[a b/(1-2x^2/((1-y x)(1-2x))),{x,0,nn}],{x,y}]]//Grid  (* Geoffrey Critzer, Nov 19 2012 *)

Formula

G.f.: G-1, where G = G(t,z) = [1+(1-t)z]/[1-(2+t)z-2(1-t)z^2]. G.f. of column k is z^(k+1)*(1-2z)^(k-1)/(1-2z-2z^2)^(k+1) (k>=1).

A120907 Triangle read by rows: T(n,k) is the number of ternary words of length n on {0,1,2} having sum of the lengths of the drops equal to k (n>=0, k>=0). The drops of a ternary word on {0,1,2} are the subwords 10,20 and 21, their lengths being the differences 1, 2 and 1, respectively.

Original entry on oeis.org

1, 3, 6, 2, 1, 10, 10, 7, 15, 30, 31, 4, 1, 21, 70, 105, 36, 11, 28, 140, 294, 184, 76, 6, 1, 36, 252, 714, 696, 396, 78, 15, 45, 420, 1554, 2160, 1666, 566, 141, 8, 1, 55, 660, 3102, 5808, 5918, 2990, 995, 136, 19, 66, 990, 5775, 13992, 18348, 12746, 5615, 1280, 226
Offset: 0

Views

Author

Emeric Deutsch, Jul 15 2006

Keywords

Comments

Row n has 2*floor(n/2)+1 terms (i.e. each of the rows 2n and 2n+1 has 2n+1 terms). Row sums are the powers of 3 (A000244). T(n,0)=A000217(n+1) (the triangular numbers). Sum(k*T(n,k),k>=0)=4(n-1)3^(n-2)=A120908(n)=4*A027471(n).

Examples

			T(4,3)=4 because we have 1020,2010,2021 and 2120.
Triangle starts:
1;
3;
6,2,1;
10,10,7;
15,30,31,4,1;
21,70,105,36,11;
		

Crossrefs

Programs

  • Maple
    G:=1/(1-z+t*z)/(1-2*z+z^2-t*z-t*z^2): Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 12 do P[n]:=sort(coeff(Gser,z^n)) od: for n from 0 to 12 do seq(coeff(P[n],t,j),j=0..2*floor(n/2)) od; # yields sequence in triangular form

Formula

G.f.=G(t,z)=1/[(1-z+tz)(1-2z+z^2-tz-tz^2)].

A126186 Triangle read by rows: T(n,k) is number of hex trees with n edges and level of first leaf (in the preorder traversal) equal to k (1 <= k <= n).

Original entry on oeis.org

3, 1, 9, 3, 6, 27, 10, 19, 27, 81, 36, 66, 90, 108, 243, 137, 245, 325, 378, 405, 729, 543, 954, 1242, 1416, 1485, 1458, 2187, 2219, 3848, 4944, 5563, 5760, 5589, 5103, 6561, 9285, 15942, 20286, 22620, 23235, 22410, 20412, 17496, 19683, 39587, 67442, 85194
Offset: 1

Views

Author

Emeric Deutsch, Dec 22 2006

Keywords

Comments

A hex tree is a rooted tree where each vertex has 0, 1, or 2 children and, when only one child is present, it is either a left child, or a middle child, or a right child (name due to an obvious bijection with certain tree-like polyhexes; see the Harary-Read reference).

Examples

			Triangle starts:
   3;
   1,   9;
   3,   6,  27;
  10,  19,  27,  81;
  36,  66,  90, 108, 243;
		

Crossrefs

Programs

  • Maple
    G:=2/(2-t-3*t*z+t*sqrt(1-6*z+5*z^2))-1: Gser:=simplify(series(G,z=0,14)): for n from 1 to 10 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 1 to 10 do seq(coeff(P[n],t,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    n = 10; g[t_, z_] = 2/(2 - t - 3t*z + t*Sqrt[1 - 6z + 5z^2]) - 1; Flatten[ Rest[ CoefficientList[#, t]] & /@ Rest[ CoefficientList[ Series[g[t, z], {z, 0, n}], z]]] (* Jean-François Alcover, Jul 22 2011, after g.f. *)

Formula

T(n,k) = [k/(n-k)] sum(3^(2k+2j-n)*binomial(n-k,j)*binomial(k-1+j,n-k-1-j), j=ceiling((n-2k)/2)..n-k) if 1<=k
G.f.: 2/[2-t-3tz+t*sqrt(1-6z+5z^2)]-1.
Sum of terms in row n = A002212(n+1).
T(n,1) = A025238(n); T(n,1) = A002212(n-1) for n>=2.
T(n,n) = 3^n = A000244(n); T(n,n-1) = (n-1)*3^(n-2) = A027471(n) (n>=2).
Sum_{k=1..n} k*T(n,k) = A126187(n).

A181371 Triangle read by rows: T(n,k) is the number of ternary words (i.e., finite sequences of 0's, 1's and 2's) of length n having k occurrences of 01's (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 3, 8, 1, 21, 6, 55, 25, 1, 144, 90, 9, 377, 300, 51, 1, 987, 954, 234, 12, 2584, 2939, 951, 86, 1, 6765, 8850, 3573, 480, 15, 17711, 26195, 12707, 2305, 130, 1, 46368, 76500, 43398, 10008, 855, 18, 121393, 221016, 143682, 40426, 4740, 183, 1, 317811
Offset: 0

Author

Emeric Deutsch, Oct 31 2010

Keywords

Comments

Row n contains 1 + floor(n/2) entries.
Sum of entries in row n is 3^n = A000244(n).
T(n,0) = F(2n+2) = A001906(n+1) (even-subscripted Fibonacci numbers).
T(n,1) = A001871(n-2).
Sum_{k>=0}k*T(n,k) = (n-1)*3^(n-2) = A027471(n) (n>=1).

Examples

			T(3,1)=6 because we have 010, 011, 012, 001, 101 and 201.
T(4,2)=1 because we have 0101.
Triangle starts:
    1;
    3;
    8,  1;
   21,  6;
   55, 25,  1;
  144, 90,  9;
		

Crossrefs

Programs

  • Maple
    G := 1/(1-3*z+z^2-t*z^2): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 13 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 13 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form

Formula

G.f. = G(t,z) = 1/(1 - 3z + z^2 - tz^2).

A360984 Triangular array read by rows. T(n,k) is the number of idempotent Boolean relation matrices on [n] with exactly k reflexive points, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 6, 4, 1, 27, 66, 29, 1, 108, 780, 1116, 355, 1, 405, 8020, 29250, 28405, 6942, 1, 1458, 76110, 649260, 1460425, 1068576, 209527
Offset: 0

Author

Geoffrey Critzer, Feb 27 2023

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1,   1;
  1,   6,    4;
  1,  27,   66,    29;
  1, 108,  780,  1116,   355;
  1, 405, 8020, 29250, 28405, 6942;
  ...
		

Crossrefs

Cf. A121337 (row sums), A000798 (main diagonal).
Cf. A245767, A027471 (column 1).

Formula

T(n,n) = A245767(n,n) = A000798(n).
T(n,n-1) = A245767(n,n-1).
T(n,1) = n*Sum_k Sum_j binomial(n-1,k)*binomial(n-1-k,j) = A027471(n+1).
E.g.f. for column 1 is x*exp(x)^3.
E.g.f. for column 2 is x^2/2*exp(x)^3 + x^2*exp(x)^6 + x^2/2*exp(x)^7.
E.g.f. for column 3 is x^3/3!*exp(x)^15 + x^3/3!*exp(x)^3 + x^3*exp(x)^10 + x^3*exp(x)^12 + x^3/2!*exp(x)^7 + 2*x^3/2!*exp(x)^6 + 2*x^3/2*exp(x)^12.

Extensions

Rows 5 and 6 added by Geoffrey Critzer, Mar 05 2023
Previous Showing 51-60 of 63 results. Next