cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A373576 Sums of maximal antiruns of prime-powers.

Original entry on oeis.org

2, 3, 4, 12, 8, 49, 171, 2032, 5157, 3997521, 199713082, 561678378, 10122001905, 109934112352390774
Offset: 1

Views

Author

Gus Wiseman, Jun 17 2024

Keywords

Comments

An antirun of a sequence (in this case A246655) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of powers of primes begin:
   2
   3
   4
   5   7
   8
   9  11  13  16
  17  19  23  25  27  29  31
		

Crossrefs

See link for composite, prime, nonsquarefree, and squarefree runs/antiruns.
Prime-power runs: A373675, min A373673, max A373674, length A174965.
Non-prime-power runs: A373678, min A373676, max A373677, length A110969.
Prime-power antiruns: A373576 (this sequence), min A120430, max A006549, length A373671.
Non-prime-power antiruns: A373679, min A373575, max A255346, length A373672.
A000040 lists the primes, differences A001223.
A000961 lists all powers of primes. A246655 lists just prime-powers.
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A356068 counts non-prime-powers up to n.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    Total/@Split[Select[Range[1000],PrimePowerQ],#1+1!=#2&]//Most

Extensions

a(14) from Giorgos Kalogeropoulos, Jun 18 2024

A373679 Sums of maximal antiruns of non-prime-powers.

Original entry on oeis.org

43, 53, 21, 163, 34, 35, 74, 39, 126, 45, 144, 51, 106, 55, 56, 57, 180, 128, 134, 69, 216, 75, 76, 77, 324, 85, 86, 87, 178, 91, 92, 93, 94, 95, 194, 99, 306, 105, 324, 111, 226, 115, 116, 117, 118, 119, 242, 123, 379, 262, 133, 134, 135, 414, 141, 142, 143
Offset: 1

Views

Author

Gus Wiseman, Jun 17 2024

Keywords

Comments

An antirun of a sequence (in this case A361102) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of non-prime-powers begin:
   1   6  10  12  14
  15  18  20
  21
  22  24  26  28  30  33
  34
  35
  36  38
  39
  40  42  44
  45
  46  48  50
  51
  52  54
  55
  56
  57
  58  60  62
  63  65
		

Crossrefs

See link for composite, prime, nonsquarefree, and squarefree runs/antiruns.
Prime-power runs: A373675, min A373673, max A373674, length A174965.
Non-prime-power runs: A373678, min A373676, max A373677, length A110969.
Prime-power antiruns: A373576, min A120430, max A006549, length A373671.
Non-prime-power antiruns: A373679 (this sequence), min A373575, max A255346, length A373672.
A000040 lists the primes, differences A001223.
A000961 lists all powers of primes. A246655 lists just prime-powers.
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A356068 counts non-prime-powers up to n.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    Total/@Split[Select[Range[100],!PrimePowerQ[#]&],#1+1!=#2&]//Most

A073051 Least k such that Sum_{i=1..k} (prime(i) + prime(i+2) - 2*prime(i+1)) = 2n + 1.

Original entry on oeis.org

1, 3, 8, 23, 33, 45, 29, 281, 98, 153, 188, 262, 366, 428, 589, 737, 216, 1182, 3301, 2190, 1878, 1830, 7969, 3076, 3426, 2224, 3792, 8027, 4611, 4521, 3643, 8687, 14861, 12541, 15782, 3384, 34201, 19025, 17005, 44772, 23282, 38589, 14356
Offset: 1

Views

Author

Robert G. Wilson v, Aug 15 2002

Keywords

Comments

Also, least k such that 2n = A001223(k-1) = prime(k+1) - prime(k), where prime(k) = A001223(n). - Alexander Adamchuk, Jul 30 2006
Also the least number k>0 such that the k-th maximal run of composite numbers has length 2n-1. For example, the 8th such run (24,25,26,27,28) is the first of length 2(3)-1, so a(3) = 8. Also positions of first appearances in A176246 (A046933 without first term). - Gus Wiseman, Jun 12 2024

Examples

			a(3) = 8 because 1+0+2-2+2-2+2+2 = 5 and (5+1)/2 = 3.
		

Crossrefs

Position of first appearance of 2n+1 in A176246.
For nonsquarefree runs we have a bisection of A373199.
A000040 lists the primes, first differences A001223.
A002808 lists the composite numbers, differences A073783, sums A053767.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.

Programs

  • Mathematica
    NextPrim[n_Integer] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; a = Table[0, {50}]; s = 0; k = 1; p = 0; q = 2; r = 3; While[k < 10^6, p = q; q = r; r = NextPrim[q]; s = s + p + r - 2q; If[s < 101 && a[[(s + 1)/2]] == 0, a[[(s + 1)/2]] = k]; k++ ]; a
  • PARI
    a001223(n) = prime(n+1) - prime(n);
    a(n) = {my(k = 1); while(2*n != A001223(k+1), k++); k;} \\ Michel Marcus, Nov 20 2016

Formula

a(n) = A038664(n) - 1. - Filip Zaludek, Nov 19 2016

A373575 Numbers k such that k and k-1 both have at least two distinct prime factors. First element of the n-th maximal antirun of non-prime-powers.

Original entry on oeis.org

1, 15, 21, 22, 34, 35, 36, 39, 40, 45, 46, 51, 52, 55, 56, 57, 58, 63, 66, 69, 70, 75, 76, 77, 78, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 100, 105, 106, 111, 112, 115, 116, 117, 118, 119, 120, 123, 124, 130, 133, 134, 135, 136, 141, 142, 143, 144, 145
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2024

Keywords

Comments

The last element of the same antirun is given by A255346.
An antirun of a sequence (in this case A361102) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of non-prime-powers begin:
   1   6  10  12  14
  15  18  20
  21
  22  24  26  28  30  33
  34
  35
  36  38
  39
  40  42  44
  45
  46  48  50
		

Crossrefs

Runs of prime-powers:
- length A174965
- min A373673
- max A373674
- sum A373675
Runs of non-prime-powers:
- length A110969
- min A373676
- max A373677
- sum A373678
Antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
Antiruns of non-prime-powers:
- length A373672
- min A373575 (this sequence)
- max A255346
- sum A373679
A000961 lists all powers of primes. A246655 lists just prime-powers.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A356068 counts non-prime-powers up to n.
A361102 lists all non-prime-powers (A024619 if not including 1).
Various run-lengths: A053797, A120992, A175632, A176246.
Various antirun-lengths: A027833, A373127, A373403, A373409.

Programs

  • Mathematica
    Select[Range[100],!PrimePowerQ[#]&&!PrimePowerQ[#-1]&]
    Join[{1},SequencePosition[Table[If[PrimeNu[n]>1,1,0],{n,150}],{1,1}][[;;,2]]] (* Harvey P. Dale, Feb 23 2025 *)

A373673 First element of each maximal run of powers of primes (including 1).

Original entry on oeis.org

1, 7, 11, 13, 16, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2024

Keywords

Comments

A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The last element of the same run is A373674.
Consists of all powers of primes k such that k-1 is not a power of primes.

Examples

			The maximal runs of powers of primes begin:
   1   2   3   4   5
   7   8   9
  11
  13
  16  17
  19
  23
  25
  27
  29
  31  32
  37
  41
  43
  47
  49
		

Crossrefs

For composite antiruns we have A005381, max A068780, length A373403.
For prime antiruns we have A006512, max A001359, length A027833.
For composite runs we have A008864, max A006093, length A176246.
For prime runs we have A025584, max A067774, length A251092 or A175632.
For runs of prime-powers:
- length A174965
- min A373673 (this sequence)
- max A373674
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676
- max A373677
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes (A246655 if not including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    pripow[n_]:=n==1||PrimePowerQ[n];
    Min/@Split[Select[Range[100],pripow],#1+1==#2&]//Most

A373674 Last element of each maximal run of powers of primes (including 1).

Original entry on oeis.org

5, 9, 11, 13, 17, 19, 23, 25, 27, 29, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Jun 16 2024

Keywords

Comments

A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The first element of the same run is A373673.
Consists of all powers of primes k such that k+1 is not a power of primes.

Examples

			The maximal runs of powers of primes begin:
   1   2   3   4   5
   7   8   9
  11
  13
  16  17
  19
  23
  25
  27
  29
  31  32
  37
  41
  43
  47
  49
		

Crossrefs

For prime antiruns we have A001359, min A006512, length A027833.
For composite runs we have A006093, min A008864, length A176246.
For prime runs we have A067774, min A025584, length A251092 or A175632.
For squarefree runs we have A373415, min A072284, length A120992.
For nonsquarefree runs we have min A053806, length A053797.
For runs of prime-powers:
- length A174965
- min A373673
- max A373674 (this sequence)
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676
- max A373677
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes (A246655 if not including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    pripow[n_]:=n==1||PrimePowerQ[n];
    Max/@Split[Select[Range[nn],pripow],#1+1==#2&]//Most

A373409 Length of the n-th maximal antirun of nonsquarefree numbers differing by more than one.

Original entry on oeis.org

2, 6, 2, 5, 2, 1, 6, 4, 2, 7, 1, 5, 2, 2, 1, 4, 4, 3, 6, 2, 2, 4, 7, 5, 7, 1, 1, 6, 6, 2, 3, 4, 7, 3, 3, 5, 1, 3, 1, 3, 2, 2, 3, 5, 5, 7, 1, 5, 7, 5, 1, 8, 4, 2, 5, 2, 2, 3, 3, 1, 7, 3, 4, 7, 1, 5, 2, 5, 2, 6, 7, 6, 7, 5, 1, 2, 3, 5, 6, 4, 1, 3, 5, 7, 2, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2024

Keywords

Comments

An antirun of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by more than one.
Conjecture: The maximum is 9, and there is no antirun of more than 9 nonsquarefree numbers. Confirmed up to 100,000,000.

Examples

			Row-lengths of:
   4   8
   9  12  16  18  20  24
  25  27
  28  32  36  40  44
  45  48
  49
  50  52  54  56  60  63
  64  68  72  75
  76  80
  81  84  88  90  92  96  98
  99
The first maximal antirun of length 9 is the following, shown with prime indices:
  6345: {2,2,2,3,15}
  6348: {1,1,2,9,9}
  6350: {1,3,3,31}
  6352: {1,1,1,1,78}
  6354: {1,2,2,71}
  6356: {1,1,4,49}
  6358: {1,5,7,7}
  6360: {1,1,1,2,3,16}
  6363: {2,2,4,26}
		

Crossrefs

Positions of first appearances are A373573, sorted A373574.
Functional neighbors: A027833, A053797, A068781, A373127, A373403, A373410, A373412.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    Length/@Split[Select[Range[1000],!SquareFreeQ[#]&],#1+1!=#2&]//Most

A373400 Numbers k such that the k-th maximal run of composite numbers has length different from all prior maximal runs. Sorted positions of first appearances in A176246 (or A046933 shifted).

Original entry on oeis.org

1, 3, 8, 23, 29, 33, 45, 98, 153, 188, 216, 262, 281, 366, 428, 589, 737, 1182, 1830, 1878, 2190, 2224, 3076, 3301, 3384, 3426, 3643, 3792, 4521, 4611, 7969, 8027, 8687, 12541, 14356, 14861, 15782, 17005, 19025, 23282, 30801, 31544, 33607, 34201, 34214, 38589
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2024

Keywords

Comments

The unsorted version is A073051.
A run of a sequence (in this case A002808) is an interval of positions at which consecutive terms differ by one.

Examples

			The maximal runs of composite numbers begin:
   4
   6
   8   9  10
  12
  14  15  16
  18
  20  21  22
  24  25  26  27  28
  30
  32  33  34  35  36
  38  39  40
  42
  44  45  46
  48  49  50  51  52
  54  55  56  57  58
  60
  62  63  64  65  66
  68  69  70
  72
  74  75  76  77  78
  80  81  82
  84  85  86  87  88
  90  91  92  93  94  95  96
  98  99 100
The a(n)-th rows are:
   4
   8   9  10
  24  25  26  27  28
  90  91  92  93  94  95  96
 114 115 116 117 118 119 120 121 122 123 124 125 126
 140 141 142 143 144 145 146 147 148
 200 201 202 203 204 205 206 207 208 209 210
		

Crossrefs

The unsorted version is A073051, firsts of A176246.
For squarefree runs we have the triple (1,3,5), firsts of A120992.
For prime runs we have the triple (1,2,3), firsts of A175632.
For squarefree antiruns we have A373128, firsts of A373127.
For nonsquarefree runs we have A373199 (assuming sorted), firsts of A053797.
For prime antiruns we have A373402, unsorted A373401, firsts of A027833.
For composite runs we have the triple (1,2,7), firsts of A373403.
A000040 lists the primes, differences A001223.
A002808 lists the composite numbers, differences A073783.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[10000],CompositeQ],#1+1==#2&]//Most;
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A373128 Least k such that the k-th maximal antirun of squarefree numbers has length n. Position of first appearance of n in A373127.

Original entry on oeis.org

1, 3, 10, 8, 19, 162, 1853, 2052, 1633, 26661, 46782, 3138650, 1080330
Offset: 1

Views

Author

Gus Wiseman, Jun 08 2024

Keywords

Comments

An antirun of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of squarefree numbers begin:
   1
   2
   3   5
   6
   7  10
  11  13
  14
  15  17  19  21
  22
  23  26  29
  30
  31  33
  34
  35  37
The a(n)-th rows are:
    1
    3    5
   23   26   29
   15   17   19   21
   47   51   53   55   57
  483  485  487  489  491  493
For example, (23, 26, 29) is the first maximal antirun of 3 squarefree numbers, so a(3) = 10.
		

Crossrefs

For composite instead of squarefree we have A073051.
Positions of first appearances in A373127.
The version for nonsquarefree runs is A373199, firsts of A053797.
For prime instead of squarefree we have A373401, firsts of A027833.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[10000],SquareFreeQ[#]&],#1+1!=#2&]//Most;
    spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[Max@@#]&];
    Table[Position[t,k][[1,1]],{k,spnm[t]}]

A373404 Sum of the n-th maximal antirun of composite numbers differing by more than one.

Original entry on oeis.org

18, 9, 36, 15, 54, 21, 46, 25, 26, 27, 90, 33, 34, 35, 74, 39, 126, 45, 94, 49, 50, 51, 106, 55, 56, 57, 180, 63, 64, 65, 134, 69, 216, 75, 76, 77, 158, 81, 166, 85, 86, 87, 178, 91, 92, 93, 94, 95, 194, 99, 306, 105, 324, 111, 226, 115, 116, 117, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The length of this antirun is given by A373403.
An antirun of a sequence (in this case A002808) is an interval of positions at which consecutive terms differ by more than one.

Examples

			Row sums of:
   4   6   8
   9
  10  12  14
  15
  16  18  20
  21
  22  24
  25
  26
  27
  28  30  32
  33
  34
  35
  36  38
  39
  40  42  44
		

Crossrefs

Partial sums are a subset of A053767 (partial sums of composite numbers).
Functional neighbors: A005381, A054265, A068780, A373403, A373405, A373411, A373412.
A000040 lists the primes, differences A001223.
A002808 lists the composite numbers, differences A073783.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.

Programs

  • Mathematica
    Total/@Split[Select[Range[100],CompositeQ],#1+1!=#2&]//Most
Previous Showing 11-20 of 44 results. Next