cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A215433 Numbers n such that n^512 + (n+1)^512 is a prime.

Original entry on oeis.org

59, 864, 1455, 1723, 2118, 2172, 2460, 2851, 2916, 2971, 3193, 3476, 3747, 3782, 3795
Offset: 1

Views

Author

Vincenzo Librandi, Aug 31 2012

Keywords

Crossrefs

Programs

A218207 Number of n-digit primes of the form (k-1)^2 + k^2.

Original entry on oeis.org

1, 3, 6, 16, 42, 107, 286, 764, 2124, 5917, 17250, 49818, 145429
Offset: 1

Views

Author

Martin Renner, Oct 23 2012

Keywords

Crossrefs

Programs

  • Mathematica
    n = 0; Table[cnt = 0; While[n++; p = 2*n^2 - 2*n + 1; p < 10^e, If[PrimeQ[p], cnt++]]; n--; cnt, {e, 10}] (* T. D. Noe, Oct 23 2012 *)

Formula

a(n) = A218208(n) - A218208(n-1)

A218208 Number of primes up to 10^n that are of the form (k-1)^2 + k^2.

Original entry on oeis.org

1, 4, 10, 26, 68, 175, 461, 1225, 3349, 9266, 26516, 76334, 221763
Offset: 1

Views

Author

Martin Renner, Oct 23 2012

Keywords

Crossrefs

Programs

  • Mathematica
    n = 0; cnt = 0; Table[While[n++; p = 2*n^2 - 2*n + 1; p < 10^e, If[PrimeQ[p], cnt++]]; n--; cnt, {e, 10}] (* T. D. Noe, Oct 23 2012 *)

Formula

a(n) = sum(A218207(k), k=1..n)

A376992 a(n) is the least n-digit prime of the form j^2 + (j+1)^2.

Original entry on oeis.org

5, 13, 113, 1013, 10513, 100801, 1006781, 10030721, 100040513, 1001057513, 10000515313, 100016728501, 1000078402181, 10000013617661, 100000472012281, 1000000064846161, 10000005481873013, 100000002459693601, 1000000116852093013, 10000000062611784481, 100000001234170737761
Offset: 1

Views

Author

Stefano Spezia, Oct 11 2024

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local j,x;
         for j from ceil((sqrt(2*10^(n-1)-1)-1)/2) do
           x:= j^2 + (j+1)^2;
           if isprime(x) then return x fi
         od
    end proc:
    map(f, [$1..40]); # Robert Israel, Oct 13 2024
  • Mathematica
    a[n_]:=Module[{k=1}, While[!PrimeQ[m=2k^2+2k+1]||IntegerLength[m]
    				
  • Python
    from math import isqrt
    from itertools import count
    from sympy import prime
    def A376992(n):
        for k in count(isqrt(((a:=10**(n-1))<<1)-1>>2)):
            m = 2*k*(k+1)+1
            if m >= a and isprime(m):
                return m # Chai Wah Wu, Oct 13 2024

Formula

Conjecture: a(n+1)/a(n) ~ 10.

A050236 Indices of consecutive squares palindromic primes; x such that x^2 + (x+1)^2 is palindromic and prime.

Original entry on oeis.org

1, 9, 12, 1262
Offset: 1

Views

Author

Keywords

Comments

No other terms < 20000000000. - Patrick De Geest, Aug 15 1999

Crossrefs

Cf. A050239.
Intersection of A027861 and A027571.

Programs

A154428 Primes of the form 50n^2 + 10n + 1.

Original entry on oeis.org

61, 1301, 1861, 2521, 5101, 7321, 8581, 9941, 14621, 16381, 20201, 24421, 26681, 34061, 36721, 51521, 68821, 76441, 97241, 101701, 106261, 110921, 135721, 163021, 168781, 199081, 205441, 218461, 252761, 282001, 304981, 312841, 337021, 353641
Offset: 1

Views

Author

Vincenzo Librandi, Jan 09 2009

Keywords

Comments

Subsequence of A027862 associated with the values of A027861 that are multiples of 5. [R. J. Mathar, Jan 12 2009]

Crossrefs

Programs

  • GAP
    Filtered(List([1..100],n->50*n^2+10*n+1),IsPrime); # Muniru A Asiru, Apr 25 2019
  • Magma
    [a: n in [0..100] | IsPrime(a) where a is 50*n^2 + 10*n + 1]; // Vincenzo Librandi, Jul 23 2012
    
  • Maple
    select(isprime,[50*n^2+10*n+1$n=1..100])[]; # Muniru A Asiru, Apr 25 2019
  • Mathematica
    Select[Table[50n^2+10n+1,{n,0,200}],PrimeQ] (* Vincenzo Librandi, Jul 23 2012 *)
  • PARI
    for (n=0, 100, if (isprime (k=50*n^2+10*n+1), print1 (k, ", "))); \\ Vincenzo Librandi, Jul 23 2012
    

Extensions

Replaced 13721 by 135721 - R. J. Mathar, Jan 12 2009

A274234 Numbers n such that n^1024 + (n+1)^1024 is prime.

Original entry on oeis.org

1078, 2020, 2471, 3255, 4200, 5135, 5185, 6218, 6823, 7220, 8416, 9003, 9008, 9267, 9396, 9689, 10316, 11150, 11250, 11543, 11652, 12960, 14021, 14201, 16523, 16751, 17006, 17054, 17747, 17874, 18157, 18640, 18834, 20478, 20481, 20794, 21147, 22166, 22608, 22638, 24450, 24677, 24894, 25709
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jun 15 2016

Keywords

Comments

The first five terms are certified primes, according to: factordb/certoverview.php. The others are probable primes. - Lewis Baxter, Jan 05 2021

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n^1024 + (n+1)^1024)]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[#^1024 + (#+1)^1024] &]
  • PARI
    for(n=1, 10000, if(isprime(n^1024 + (n+1)^1024), print1(n, ", ")))
    

A274235 Numbers n such that n^2048 + (n+1)^2048 is prime.

Original entry on oeis.org

754, 1289, 1368, 1813, 3159, 3280, 3301, 4976, 6204, 6283, 6723, 6904, 7141, 10246, 11417, 13268, 15456, 19428, 19683, 19698, 20298, 21484, 22543, 23702, 23815, 24747, 27010, 32319, 34133, 36201, 37030, 39438, 41292, 44472, 47623, 50198, 51031, 51370, 51521, 52628, 53073, 53309, 53767, 55911, 56630, 59424
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jun 15 2016

Keywords

Comments

The terms correspond only to probable primes.

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n^2048 + (n+1)^2048)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[#^2048 + (#+1)^2048] &]
  • PARI
    for(n=1, 10000, if(isprime(n^2048 + (n+1)^2048), print1(n, ", ")))
    

A274236 Numbers k such that k^4096 + (k+1)^4096 is prime.

Original entry on oeis.org

311, 2741, 3582, 5293, 6289, 12080, 14082, 16886, 17971, 19936, 21454, 21486, 26652, 26904, 28314, 34693, 35778, 36292, 40868, 43819, 46356, 46467, 49653, 53996, 57150, 58169, 64937, 67398, 77383, 82577, 86031, 86102, 87352, 87684, 89030, 93340, 95346, 97320, 98191, 111483, 113947, 118052, 125442, 125836, 126157, 127832, 130794
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jun 15 2016

Keywords

Comments

The terms correspond only to probable primes.

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n^4096 + (n+1)^4096)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[#^4096 + (#+1)^4096] &]
  • PARI
    for(n=1, 10000, if(isprime(n^4096 + (n+1)^4096), print1(n, ", ")))
    

A274237 Numbers k such that k^8192 + (k+1)^8192 is prime.

Original entry on oeis.org

3508, 5209, 13428, 15347, 16339, 17779, 22548, 37726, 40408
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jun 15 2016

Keywords

Comments

The terms correspond only to probable primes.

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n^8192 + (n+1)^8192)]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[#^8192 + (#+1)^8192] &]
  • PARI
    for(n=1, 10000, if(isprime(n^8192 + (n+1)^8192), print1(n, ", ")))
    
Previous Showing 11-20 of 40 results. Next