cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 72 results. Next

A214985 Array: T(m,n) = (F(n) + F(2*n) + ... + F(n*m))/F(n), by antidiagonals; transpose of A214984.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 1, 5, 12, 7, 1, 8, 22, 33, 12, 1, 12, 56, 94, 88, 20, 1, 19, 134, 385, 399, 232, 33, 1, 30, 342, 1487, 2640, 1691, 609, 54, 1, 48, 872, 6138, 16492, 18096, 7164, 1596, 88, 1, 77, 2256, 25319, 110143, 182900, 124033, 30348, 4180, 143
Offset: 1

Views

Author

Clark Kimberling, Oct 28 2012

Keywords

Comments

row 1: A001612 (except for initial term)
col 1: A000071
col 2: A027941
col 3: A049652
col 4: A092521
col 6: A049664
col 8: A156093 without minus signs

Examples

			Northwest corner:
1....1.....1......1.......1
2....4.....5......8.......12
4....12....22.....56......134
7....33....94.....385.....1487
12...88....399....2640....16492
20...232...1691...18096...182900
		

Crossrefs

Programs

  • Mathematica
    F[n_] := Fibonacci[n]; L[n_] := LucasL[n];
    t[m_, n_] := (1/F[n])*Sum[F[k*n], {k, 1, m}]
    TableForm[Table[t[m, n], {m, 1, 10}, {n, 1, 10}]]
    Flatten[Table[t[k, n + 1 - k], {n, 1, 12}, {k, 1, n}]]

Formula

For odd-numbered columns (m odd):
T(m,n) = (F(m*n+m) + F(m*n) - F(m))/(F(m)*L(m)).
For even-numbered columns (m even):
T(m,n) = (F(m*n+m) - F(m*n) - F(m))/(F(m)*(L(m)-1)).

A219020 Sum of the cubes of the first n even-indexed Fibonacci numbers divided by the sum of the first n terms.

Original entry on oeis.org

1, 7, 45, 297, 2002, 13630, 93177, 638001, 4371235, 29956465, 205313076, 1407206412, 9645056785, 66107994667, 453110391657, 3105663400665, 21286529888422, 145900036590826, 1000013702089545, 6854195814790005, 46979356835860351, 322001301602738017, 2207029753248402600, 15127206968164865112
Offset: 1

Views

Author

Max Alekseyev, Nov 09 2012

Keywords

Comments

For a Lucas sequence U(k,1), the sum of the cubes of the first n terms is divisible by the sum of the first n terms. This sequence corresponds to the case of k=3.

Crossrefs

Programs

  • Mathematica
    Table[Fibonacci[2*n+1]/4 + LucasL[4*n+2]/20 - 2/5, {n, 1, 20}] (* Vaclav Kotesovec, May 23 2013 *)
    With[{f=Fibonacci[Range[2,50,2]]},Accumulate[f^3]/Accumulate[f]] (* Harvey P. Dale, Feb 17 2020 *)
  • PARI
    Vec(x*(1-4*x+x^2)/((1-x)*(1-7*x+x^2)*(1-3*x+x^2)) + O(x^100)) \\ Altug Alkan, Dec 09 2015

Formula

a(n) = Sum_{k=1..n} A001906(k)^3 / Sum_{k=1..n} A001906(k).
a(n) = A163198(n) / A027941(n).
a(n) = 11*a(n-1) - 33*a(n-2) + 33*a(n-3) - 11*a(n-4) + a(n-5). - Vaclav Kotesovec, May 23 2013
G.f.: x*(1-4*x+x^2)/((1-x)*(1-7*x+x^2)*(1-3*x+x^2)). [Bruno Berselli, Jun 07 2013]

A077826 Expansion of (1-x)^(-1)/(1-2*x-3*x^2-2*x^3).

Original entry on oeis.org

1, 3, 10, 32, 101, 319, 1006, 3172, 10001, 31531, 99410, 313416, 988125, 3115319, 9821846, 30965900, 97627977, 307797347, 970410426, 3059468848, 9645763669, 30410754735, 95877738174, 302279267892, 953013259777, 3004619799579, 9472837914274, 29865561746840
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Partial sums of S(n, x), for x=1...10, A021823, A000217, A027941, A061278, A089817, A053142, A092521, A076765, A092420, A097784.
Partial sums of A077833.

Programs

Formula

From Wesley Ivan Hurt, Jun 26 2022: (Start)
G.f.: (1-x)^(-1)/(1-2*x-3*x^2-2*x^3).
a(n) = 3*a(n-1) + a(n-2) - a(n-3) - 2*a(n-4). (End)

A077827 Expansion of (1-x)^(-1)/(1-2*x-2*x^2-2*x^3).

Original entry on oeis.org

1, 3, 9, 27, 79, 231, 675, 1971, 5755, 16803, 49059, 143235, 418195, 1220979, 3564819, 10407987, 30387571, 88720755, 259032627, 756281907, 2208070579, 6446770227, 18822245427, 54954172467, 160446376243, 468445588275, 1367692273971, 3993168476979, 11658612678451
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002, Jun 05 2007

Keywords

Crossrefs

Partial sums of S(n, x), for x=1...11, A021823, A000217, A027941, A061278, A089817, A053142, A092521, A076765, A092420, A097784, A097826.

Programs

  • Mathematica
    CoefficientList[Series[(1-x)^(-1)/(1-2x-2x^2-2x^3),{x,0,40}],x]  (* Harvey P. Dale, Mar 27 2011 *)
  • PARI
    Vec((1-x)^(-1)/(1-2*x-2*x^2-2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

A077830 Expansion of 1/(1-3*x-2*x^2-3*x^3).

Original entry on oeis.org

1, 3, 11, 42, 157, 588, 2204, 8259, 30949, 115977, 434606, 1628619, 6103000, 22870056, 85702025, 321155187, 1203479779, 4509855786, 16899992477, 63330128340, 237319937332, 889320046107, 3332590398005, 12488371098225, 46798254229006, 175369276077483
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-3x-2x^2-3x^3),{x,0,40}],x] (* or *) LinearRecurrence[{3,2,3},{1,3,11},40] (* Harvey P. Dale, Nov 05 2021 *)

A101919 Triangle read by rows: T(n,k) is the number of Schroeder paths of length 2n and having k up steps starting at even heights.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 8, 1, 1, 33, 42, 13, 1, 1, 88, 183, 102, 19, 1, 1, 232, 717, 624, 205, 26, 1, 1, 609, 2622, 3275, 1650, 366, 34, 1, 1, 1596, 9134, 15473, 11020, 3716, 602, 43, 1, 1, 4180, 30691, 67684, 64553, 30520, 7483, 932, 53, 1, 1, 10945, 100284, 279106
Offset: 0

Views

Author

Emeric Deutsch, Dec 20 2004

Keywords

Comments

A Schroeder path of length 2n is a lattice path starting from (0,0), ending at (2n,0), consisting only of steps U=(1,1) (up steps), D=(1,-1) (down steps) and H=(2,0) (level steps) and never going below the x-axis (Schroeder paths are counted by the large Schroeder numbers, A006318). Also number of Schroeder paths of length 2n and having k humps. A hump is an up step U followed by 0 or more level steps H followed by a down step D. The T(3,2)=8 Schroeder paths of length 6 and having 2 humps are: H(UD)(UD), (UD)H(UD), (UD)(UD)H, (UD)(UHD), (UD)(UUDD), (UHD)(UD), (UUDD)(UD) and U(UD)(UD)D, the humps being shown between parentheses. Row sums are the large Schroeder numbers (A006318). Column 1 yields the odd-indexed Fibonacci numbers minus 1 (A027941). T(n,n-1)=A034856(n)=binomial(n + 1, 2) + n - 1.
Product A085478*A090181 (Morgan-Voyce times Narayana). [From Paul Barry, Jan 29 2009]

Examples

			T(3,2)=8 because we have HU'DU'D, U'DHU'D, U'DU'DH, U'DU'HD, U'DU'UDD, U'HDU'D, U'UDDU'D and U'UU'DDD, the up steps starting at an even height being shown with a prime sign.
Triangle begins:
1;
1,1;
1,4,1;
1,12,8,1;
1,33,42,13,1;
		

Crossrefs

Programs

  • Maple
    G:=1/2/(-z+z^2)*(-1+z+t*z-z^2+sqrt(1-6*z-2*t*z+11*z^2+2*t*z^2-6*z^3+t^2*z^2-2*t*z^3+z^4)): Gser:=simplify(series(G,z=0,13)): P[0]:=1: for n from 1 to 11 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 11 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields the sequence in triangular form

Formula

G.f.=G=G(t, z) satisfies z(1-z)G^2-(1-z-tz+z^2)G+1-z=0.
G.f.: 1/(1-x-xy/(1-x-x/(1-x-xy/(1-x-xy/(1-x-x/(1-x-xy/(1-.... (continued fraction). [From Paul Barry, Jan 29 2009]

A105073 Define a(1)=0, a(2)=2 then a(n) = 3*a(n-1) - a(n-2), a(n+1) = 3*a(n)-a(n-1) and a(n+2) = 3*a(n+1) - a(n) + 2.

Original entry on oeis.org

0, 2, 6, 16, 44, 116, 304, 798, 2090, 5472, 14328, 37512, 98208, 257114, 673134, 1762288, 4613732, 12078908, 31622992, 82790070, 216747218, 567451584, 1485607536, 3889371024, 10182505536, 26658145586, 69791931222, 182717648080, 478361013020, 1252365390980
Offset: 1

Views

Author

Pierre CAMI, Apr 06 2005

Keywords

Comments

From Jon E. Schoenfield, Jan 18 2019: (Start)
Previously, the Name had included the comment, "This sequence is such that 20*(a(n)^2) + 20*a(n) + 1 = j^2 = a square."
However, Anthony Hernandez observed that this statement is not true for all terms; e.g., at a(4)=16, 20*16^2 + 20*16 + 1 = 5441, a nonsquare.
It is true that 20*a(n)^2 + 20*a(n) + 1 = A305315(n/3)^2 when n == 0 (mod 3) and A305316((n-2)/3)^2 when n == 2 (mod 3); however, for n == 1 (mod 3) with n > 1, sqrt(20*a(n)^2 + 20*a(n) + 1) is a noninteger number whose fractional part apparently approaches 3 - sqrt(5) as n increases, and Andrey Zabolotskiy observes that round(sqrt(20*a(n)^2 + 20*a(n) + 1) + sqrt(5)) appears to be equal to A002878(n). (End)

Crossrefs

Programs

  • Magma
    I:=[0,2,6,16,44]; [n le 5 select I[n] else 3*Self(n-1) - Self(n-2) + Self(n-3) - 3*Self(n-4) + Self(n-5): n in [1..35]]; // Vincenzo Librandi, Jan 13 2019
  • Mathematica
    a[n_]:=(1/6)*(Fibonacci[2*n+4] - 2*Fibonacci[2*n] - 2*Cos[(n+2)*(2*Pi/3)] - 4 ); Array[a,50] (* Stefano Spezia, Jan 11 2019 *)
    RecurrenceTable[{a[1]==0, a[2]==2, a[3]==6, a[4]==16, a[5]==44, a[n]== 3 a[n-1] - a[n-2] + a[n-3] - 3 a[n-4] + a[n-5]}, a, {n, 35}] (* Vincenzo Librandi, Jan 13 2019 *)

Formula

a(n) = (1/6)*(Fibonacci(2n+4) - 2*Fibonacci(2n) - 2*cos((n+2)(2*Pi/3)) - 4). - Ralf Stephan, May 20 2007
From R. J. Mathar, Nov 13 2009: (Start)
a(n) = 3*a(n-1) - a(n-2) + a(n-3) - 3*a(n-4) + a(n-5).
G.f.: 2*x^2/((1-x) * (1+x+x^2) * (1-3*x+x^2)).
a(n) = A061347(n+2)/6 + A001519(n+2)/2 - 2/3. (End)
a(n) = floor(A027941(n)/2). - Anthony Hernandez, Jan 03 2019

Extensions

Extended by R. J. Mathar, Nov 13 2009

A134561 Array T by antidiagonals: T(n,k) = k-th number whose Zeckendorf representation has exactly n terms.

Original entry on oeis.org

1, 2, 4, 3, 6, 12, 5, 7, 17, 33, 8, 9, 19, 46, 88, 13, 10, 20, 51, 122, 232, 21, 11, 25, 53, 135, 321, 609, 34, 14, 27, 54, 140, 355, 842, 1596, 55, 15, 28, 67, 142, 368, 931, 2206, 4180, 89, 16, 30, 72, 143, 373, 965
Offset: 1

Views

Author

Clark Kimberling, Nov 01 2007

Keywords

Comments

A permutation of the natural numbers.
Except for initial terms in some cases, (Row 1) = A000045 (Row 2) = A095096 (Row 3) = A059390 (Row 4) = A111458 (Col 1) = A027941 (Col 2) = A005592.

Examples

			19 = 13 + 5 + 1 is the 3rd-largest number (after 12 and 17) that has a 3-term Zeckendorf representation; i.e., the (unique) sum of distinct non-neighboring Fibonacci numbers.
Northwest corner:
1 2 3 5 8 13
4 6 7 9 10 11
12 17 19 20 25 27
33 46 51 53 54 67
		

Crossrefs

Cf. A035513.

A214729 Member m=6 of the m-family of sums b(m,n) = Sum_{k=0..n} F(k+m)*F(k), m >= 0, n >= 0, with the Fibonacci numbers F.

Original entry on oeis.org

0, 13, 34, 102, 267, 712, 1864, 4893, 12810, 33550, 87835, 229968, 602064, 1576237, 4126642, 10803702, 28284459, 74049688, 193864600, 507544125, 1328767770, 3478759198, 9107509819, 23843770272, 62423800992, 163427632717, 427859097154, 1120149658758
Offset: 0

Views

Author

Wolfdieter Lang, Jul 27 2012

Keywords

Comments

See the comment section on A080144 for the general formula and the o.g.f. for b(m,n).

Crossrefs

Cf. A001654, A027941, A059840(n+2), A064831, A080097, A080143 and A080144 for the m=0,1,...,5 members.
Cf. A027941.

Programs

  • Magma
    [(9*(-1)^(n+1)-20+Lucas(2*n+7))/5: n in [0..40]]; // Vincenzo Librandi, Aug 26 2017
    
  • Mathematica
    With[{m = 6}, Table[Sum[Fibonacci[k + m]*Fibonacci[k], {k, 0, n}], {n, 0, 25}]] (* or *)
    Table[(9 (-1)^(n + 1) - 20 + LucasL[2 n + 7])/5, {n, 0, 25}] (* Michael De Vlieger, Aug 23 2017 *)
    LinearRecurrence[{3,0,-3,1},{0,13,34,102},40] (* Harvey P. Dale, Jun 13 2022 *)
  • PARI
    concat(0, Vec(x*(13 - 5*x) / ((1 - x)*(1 + x)*(1 - 3*x + x^2)) + O(x^30))) \\ Colin Barker, Aug 25 2017
    
  • SageMath
    [fibonacci(n+3)*fibonacci(n+4) - 2*(2+(-1)^n) for n in range(41)] # G. C. Greubel, Dec 31 2023

Formula

a(n) = b(6,n) = 4*A027941(n) + 9*A001654(n), with A027941(n) = Fibonacci(2*n+1) - 1 and A001654(n) = Fibonacci(n+1)*Fibonacci(n), n >= 0. 4 = Fibonacci(6)/2 and 9 = LucasL(6)/2.
O.g.f.: x*(13-5*x)/((1-x^2)*(1-3*x+x^2)) (see a comment above). - Wolfdieter Lang, Jul 30 2012
a(n) = (9*(-1)^(n+1) - 20 + Lucas(2*n + 7))/5. - Ehren Metcalfe, Aug 21 2017
From Colin Barker, Aug 25 2017: (Start)
a(n) = (1/10)*((29 - 13*sqrt(5))*((3 - sqrt(5))/2)^n + (29 + 13*sqrt(5))*((3 + sqrt(5))/2)^n - 2*(20 + 9*(-1)^n) ).
a(n) = 2*a(n-1) + 2*a(n-2) + 2*a(n-3) - a(n-4) for n>3. (End)
a(n) = A001654(n+3) - 2*(2 + (-1)^n). - G. C. Greubel, Dec 31 2023

A293064 Number of vertices of type B at level n of the hyperbolic Pascal pyramid PP_(4,5).

Original entry on oeis.org

0, 0, 0, 1, 4, 12, 33, 88, 232, 609, 1596, 4180, 10945, 28656, 75024, 196417, 514228, 1346268, 3524577, 9227464, 24157816, 63245985, 165580140, 433494436, 1134903169, 2971215072, 7778742048, 20365011073, 53316291172, 139583862444, 365435296161, 956722026040
Offset: 0

Views

Author

Eric M. Schmidt, Sep 30 2017

Keywords

Comments

a(n+2) = A027941(n) = Fibonacci(2n+1) - 1 for n >= 0. - Georg Fischer, Oct 09 2018

Crossrefs

Programs

  • Mathematica
    Join[{0}, LinearRecurrence[{4, -4, 1}, {0, 0, 1}, 31]] (* Jean-François Alcover, Oct 07 2017 *)
  • PARI
    concat(vector(3), Vec(x^3 / ((1 - x)*(1 - 3*x + x^2)) + O(x^40))) \\ Colin Barker, Oct 07 2017

Formula

a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3), n >= 4.
From Colin Barker, Oct 07 2017: (Start)
G.f.: x^3 / ((1 - x)*(1 - 3*x + x^2)).
a(n) = -1 + (2^(-n)*((3-sqrt(5))^n*(2+sqrt(5)) + (-2+sqrt(5))*(3+sqrt(5))^n)) / sqrt(5) for n>0.
(End)
Previous Showing 51-60 of 72 results. Next