cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A300454 Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2.

Original entry on oeis.org

0, 1, 2, 1, 0, 3, 4, 1, 0, 5, 8, 3, 0, 7, 14, 9, 2, 0, 9, 22, 21, 10, 2, 0, 11, 32, 41, 30, 12, 2, 0, 13, 44, 71, 70, 42, 14, 2, 0, 15, 58, 113, 140, 112, 56, 16, 2, 0, 17, 74, 169, 252, 252, 168, 72, 18, 2, 0, 19, 92, 241, 420, 504, 420, 240, 90, 20, 2, 0
Offset: 0

Views

Author

Keywords

Comments

Row sums of column 1,2 and 3 yields {4, 8, 16, 30, 52, ...}, in A046127.
Almost twice Pascal's triangle A028326 (up to horizontal shift), except column 0 to 3.
The polynomial P(n;x) = 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2 is a simplified version of the bracket polynomial associated with a twist knot of n half twists that is only concerned with the enumeration of the state diagrams. The simplification arises when the twist knot is thought of as a planar diagram with no crossing information at each double point. In this case, P(n;x) = x*(A,B,x), where (A,B,d) denotes the bracket polynomial for the n-twist knot (see links for the definition of the bracket polynomial). For example, the bracket polynomial for the trefoil (n = 2) is A^3*d^1 + 3*BA^2*d^0 + 3*AB^2*d^1 + B^3*d^2, where A and B are the "splitting variables". Then setting A = B = 1 and d = x, we obtain 3 + 4*x + x^2 (also see A299989, row 1).

Examples

			The triangle T(n,k) begins
n\k  0   1    2    3     4     5     6     7     8     9    10   11   12  13 14
0:   0   1    2    1
1:   0   3    4    1
2:   0   5    8    3
3:   0   7   14    9     2
4:   0   9   22   21    10     2
5:   0  11   32   41    30    12     2
6:   0  13   44   71    70    42    14     2
7:   0  15   58  113   140   112    56    16     2
8:   0  17   74  169   252   252   168    72    18     2
9:   0  19   92  241   420   504   420   240    90    20     2
10:  0  21  112  331   660   924   924   660   330   110    22    2
11:  0  23  134  441   990  1584  1848  1584   990   440   132   24    2
12:  0  25  158  573  1430  2574  3432  3432  2574  1430   572  156   26   2
13:  0  27  184  729  2002  4004  6006  6864  6006  4004  2002  728  182  28  2
		

References

  • Inga Johnson and Allison K. Henrich, An Interactive Introduction to Knot Theory, Dover Publications, Inc., 2017.

Crossrefs

Row sums: A020707(Pisot sequences).
Triangles related to the regular projection of some knots: A299989 (connected summed trefoils); A300184 (chain links); A300453 ((2,n)-torus knot).

Programs

  • Maxima
    P(n, x) := 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2$
    T : []$
    for i:0 thru 20 do
      T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(3, i + 1)))$
    T;
    
  • PARI
    row(n) = Vecrev(2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2);
    tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Mar 12 2018

Formula

T(n,1) = A005408(n).
T(n,2) = A014206(n).
T(n,3) = A064999(n+1).
T(n,1) + T(n,2) = A002061(n+2).
T(n,1) + T(n,3) = A046127(n+1).
T(n,2) + T(n,3) = A155753(n+1).
T(n,1) + T(n,2) + T(n,3) = A046127(n+2).
T(n,k) = A028326(n,k-1), k >= 4 and n >= k - 1.
T(n,k) = A300454(n,k-1) + 2*A300454(n,k) + A007318(n,k-1), with T(n,0) = 0.
G.f: (2*x + 2)/(1 - y*(x + 1)) + (x^3 + 2*x^2 - x - 2)/(1 - y).

A227550 A triangle formed like Pascal's triangle, but with factorial(n) on the borders instead of 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 6, 4, 4, 6, 24, 10, 8, 10, 24, 120, 34, 18, 18, 34, 120, 720, 154, 52, 36, 52, 154, 720, 5040, 874, 206, 88, 88, 206, 874, 5040, 40320, 5914, 1080, 294, 176, 294, 1080, 5914, 40320, 362880, 46234, 6994, 1374, 470, 470, 1374, 6994, 46234, 362880, 3628800
Offset: 0

Views

Author

Vincenzo Librandi, Aug 04 2013

Keywords

Comments

A003422 gives the second column (after 0).

Examples

			Triangle begins:
       1;
       1,     1;
       2,     2,    2;
       6,     4,    4,    6;
      24,    10,    8,   10,  24;
     120,    34,   18,   18,  34, 120;
     720,   154,   52,   36,  52, 154,  720;
    5040,   874,  206,   88,  88, 206,  874, 5040;
   40320,  5914, 1080,  294, 176, 294, 1080, 5914, 40320;
  362880, 46234, 6994, 1374, 470, 470, 1374, 6994, 46234, 362880;
		

Crossrefs

Cf. similar triangles with t on the borders: A007318 (t = 1), A028326 (t = 2), A051599 (t = prime(n)), A051601 (t = n), A051666 (t = n^2), A108617 (t = fibonacci(n)), A134636 (t = 2n+1), A137688 (t = 2^n), A227075 (t = 3^n).
Cf. A003422.
Cf. A227791 (central terms), A001563, A074911.

Programs

  • Haskell
    a227550 n k = a227550_tabl !! n !! k
    a227550_row n = a227550_tabl !! n
    a227550_tabl = map fst $ iterate
       (\(vs, w:ws) -> (zipWith (+) ([w] ++ vs) (vs ++ [w]), ws))
       ([1], a001563_list)
    -- Reinhard Zumkeller, Aug 05 2013
    
  • Magma
    function T(n,k)
      if k eq 0 or k eq n then return Factorial(n);
      else return T(n-1,k-1) + T(n-1,k);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 02 2021
    
  • Mathematica
    t = {}; Do[r = {}; Do[If[k == 0||k == n, m = n!, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
  • Sage
    def T(n,k): return factorial(n) if (k==0 or k==n) else T(n-1, k-1) + T(n-1, k)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 02 2021

Formula

From G. C. Greubel, May 02 2021: (Start)
T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = T(n, n) = n!.
Sum_{k=0..n} T(n, k) = 2^n * (1 +Sum_{j=1..n-1} j*j!/2^j) = A140710(n). (End)

A139524 Triangle T(n,k) read by rows: the coefficient of [x^k] of the polynomial 2*(x+1)^n + 2^n in row n, column k.

Original entry on oeis.org

3, 4, 2, 6, 4, 2, 10, 6, 6, 2, 18, 8, 12, 8, 2, 34, 10, 20, 20, 10, 2, 66, 12, 30, 40, 30, 12, 2, 130, 14, 42, 70, 70, 42, 14, 2, 258, 16, 56, 112, 140, 112, 56, 16, 2, 514, 18, 72, 168, 252, 252, 168, 72, 18, 2, 1026, 20, 90, 240, 420, 504, 420, 240, 90, 20, 2
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jun 09 2008

Keywords

Examples

			Triangle begins as:
     3;
     4,  2;
     6,  4,  2;
    10,  6,  6,   2;
    18,  8, 12,   8,   2;
    34, 10, 20,  20,  10,   2;
    66, 12, 30,  40,  30,  12,   2;
   130, 14, 42,  70,  70,  42,  14,   2;
   258, 16, 56, 112, 140, 112,  56,  16,  2;
   514, 18, 72, 168, 252, 252, 168,  72, 18,  2;
  1026, 20, 90, 240, 420, 504, 420, 240, 90, 20, 2;
		

References

  • Advanced Number Theory, Harvey Cohn, Dover Books, 1963, Pages 88-89

Crossrefs

Programs

  • Magma
    A139524:= func< n,k | k eq 0 select 2+2^n else 2*Binomial(n,k) >;
    [A139524(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 02 2021
    
  • Mathematica
    (* First program *)
    T[n_, k_]:= SeriesCoefficient[Series[2*(1+x)^n + 2^n, {x, 0, 20}], k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 02 2021 *)
    (* Second program *)
    T[n_, k_]:= T[n, k] = If[k==0, 2 + 2^n, 2*Binomial[n, k]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 02 2021 *)
  • Sage
    def A139524(n,k): return 2+2^n if (k==0) else 2*binomial(n,k)
    flatten([[A139524(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 02 2021

Formula

Sum_{k=0..n} T(n,k) = 3*2^n = A007283(n).
From R. J. Mathar, Sep 12 2013: (Start)
T(n,0) = 2 + 2^n = A052548(n).
T(n,k) = 2*binomial(n,k) = A028326(n,k) if k>0. (End)

A317644 Triangle read by rows: multiplicative version of Pascal's triangle except n-th row begins and ends with (n+1)-st prime.

Original entry on oeis.org

2, 3, 3, 5, 9, 5, 7, 45, 45, 7, 11, 315, 2025, 315, 11, 13, 3465, 637875, 637875, 3465, 13, 17, 45045, 2210236875, 406884515625, 2210236875, 45045, 17, 19, 765765, 99560120034375, 899311160300888671875, 899311160300888671875, 99560120034375, 765765, 19, 23, 14549535, 76239655318123171875, 89535527067809533413858673095703125, 808760563041730681160065242862701416015625, 89535527067809533413858673095703125, 76239655318123171875, 14549535, 23
Offset: 0

Views

Author

Philipp O. Tsvetkov, Aug 02 2018

Keywords

Examples

			Triangle begins:
   2;
   3,      3;
   5,      9,      5;
   7,     45,     45,      7;
  11,    315,   2025,    315,     11;
  13,   3465, 637875, 637875,   3465,     13;
  ...
Formatted as a symmetric triangle:
.
                       2
.
                   3       3
.
               5       9       5
.
           7      45      45       7
.
      11      315    2025     315     11
.
  13     3465   637875  637875   3465     13
...
		

Crossrefs

Programs

  • Mathematica
    t = {{2}};
    Table[AppendTo[
        t, {Prime[i],
          Table[
           t[[i - 1]][[j]]*t[[i - 1]][[j + 1]], {j,
            1, (t[[i - 1]] // Length) - 1}], Prime[i]} // Flatten], {i, 2, 10}] //
       Last // Flatten
    t={}; Do[r={}; Do[If[k==0||k==n, m=Prime[n + 1], m=t[[n, k]]t[[n, k + 1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t (* Vincenzo Librandi, Sep 03 2018 *)

Formula

From Rémy Sigrist, Sep 02 2018: (Start)
A007949(T(n+1, k+1)) = A028326(n, k) for any n >= 0 and k = 0..n.
A112765(T(n+1, k+1)) = A007318(n, k) for any n > 0 and k = 0..n.
(End)
Previous Showing 11-14 of 14 results.