A300454
Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2.
Original entry on oeis.org
0, 1, 2, 1, 0, 3, 4, 1, 0, 5, 8, 3, 0, 7, 14, 9, 2, 0, 9, 22, 21, 10, 2, 0, 11, 32, 41, 30, 12, 2, 0, 13, 44, 71, 70, 42, 14, 2, 0, 15, 58, 113, 140, 112, 56, 16, 2, 0, 17, 74, 169, 252, 252, 168, 72, 18, 2, 0, 19, 92, 241, 420, 504, 420, 240, 90, 20, 2, 0
Offset: 0
The triangle T(n,k) begins
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0: 0 1 2 1
1: 0 3 4 1
2: 0 5 8 3
3: 0 7 14 9 2
4: 0 9 22 21 10 2
5: 0 11 32 41 30 12 2
6: 0 13 44 71 70 42 14 2
7: 0 15 58 113 140 112 56 16 2
8: 0 17 74 169 252 252 168 72 18 2
9: 0 19 92 241 420 504 420 240 90 20 2
10: 0 21 112 331 660 924 924 660 330 110 22 2
11: 0 23 134 441 990 1584 1848 1584 990 440 132 24 2
12: 0 25 158 573 1430 2574 3432 3432 2574 1430 572 156 26 2
13: 0 27 184 729 2002 4004 6006 6864 6006 4004 2002 728 182 28 2
- Inga Johnson and Allison K. Henrich, An Interactive Introduction to Knot Theory, Dover Publications, Inc., 2017.
- Agnijo Banerjee, Knot theory.
- Răzvan Gelca and Fumikazu Nagasato,Some results about the kauffman bracket skein module of the twist knot exterior, J. Knot Theory Ramifications 15 (2006), 1095-1106.
- L. H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
- Kelsey Lafferty, The three-variable bracket polynomial for reduced, alternating links, Rose-Hulman Undergraduate Mathematics Journal, Vol. 14: Iss. 2, Article 7 (2013).
- Franck Ramaharo, Enumerating the states of the twist knot, arXiv preprint arXiv:1712.06543 [math.CO], 2017.
- Franck Ramaharo, A one-variable bracket polynomial for some Turk's head knots, arXiv:1807.05256 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Alexander Stoimenow, Generating functions, Fibonacci numbers and rational knots, Journal of Algebra, Volume 310, Issue 2 (2007), 491-525.
- Eric Weisstein's World of Mathematics, Bracket Polynomial.
- Wikipedia, Twist knot.
Row sums:
A020707(Pisot sequences).
Triangles related to the regular projection of some knots:
A299989 (connected summed trefoils);
A300184 (chain links);
A300453 ((2,n)-torus knot).
Cf.
A002061,
A005408,
A007318,
A014206,
A028326,
A028326,
A046127,
A046127,
A046127,
A064999,
A155753,
A299989,
A300454,
A300454.
-
P(n, x) := 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2$
T : []$
for i:0 thru 20 do
T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(3, i + 1)))$
T;
-
row(n) = Vecrev(2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2);
tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Mar 12 2018
A227550
A triangle formed like Pascal's triangle, but with factorial(n) on the borders instead of 1.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 6, 4, 4, 6, 24, 10, 8, 10, 24, 120, 34, 18, 18, 34, 120, 720, 154, 52, 36, 52, 154, 720, 5040, 874, 206, 88, 88, 206, 874, 5040, 40320, 5914, 1080, 294, 176, 294, 1080, 5914, 40320, 362880, 46234, 6994, 1374, 470, 470, 1374, 6994, 46234, 362880, 3628800
Offset: 0
Triangle begins:
1;
1, 1;
2, 2, 2;
6, 4, 4, 6;
24, 10, 8, 10, 24;
120, 34, 18, 18, 34, 120;
720, 154, 52, 36, 52, 154, 720;
5040, 874, 206, 88, 88, 206, 874, 5040;
40320, 5914, 1080, 294, 176, 294, 1080, 5914, 40320;
362880, 46234, 6994, 1374, 470, 470, 1374, 6994, 46234, 362880;
-
a227550 n k = a227550_tabl !! n !! k
a227550_row n = a227550_tabl !! n
a227550_tabl = map fst $ iterate
(\(vs, w:ws) -> (zipWith (+) ([w] ++ vs) (vs ++ [w]), ws))
([1], a001563_list)
-- Reinhard Zumkeller, Aug 05 2013
-
function T(n,k)
if k eq 0 or k eq n then return Factorial(n);
else return T(n-1,k-1) + T(n-1,k);
end if; return T;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 02 2021
-
t = {}; Do[r = {}; Do[If[k == 0||k == n, m = n!, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
-
def T(n,k): return factorial(n) if (k==0 or k==n) else T(n-1, k-1) + T(n-1, k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 02 2021
A139524
Triangle T(n,k) read by rows: the coefficient of [x^k] of the polynomial 2*(x+1)^n + 2^n in row n, column k.
Original entry on oeis.org
3, 4, 2, 6, 4, 2, 10, 6, 6, 2, 18, 8, 12, 8, 2, 34, 10, 20, 20, 10, 2, 66, 12, 30, 40, 30, 12, 2, 130, 14, 42, 70, 70, 42, 14, 2, 258, 16, 56, 112, 140, 112, 56, 16, 2, 514, 18, 72, 168, 252, 252, 168, 72, 18, 2, 1026, 20, 90, 240, 420, 504, 420, 240, 90, 20, 2
Offset: 0
Triangle begins as:
3;
4, 2;
6, 4, 2;
10, 6, 6, 2;
18, 8, 12, 8, 2;
34, 10, 20, 20, 10, 2;
66, 12, 30, 40, 30, 12, 2;
130, 14, 42, 70, 70, 42, 14, 2;
258, 16, 56, 112, 140, 112, 56, 16, 2;
514, 18, 72, 168, 252, 252, 168, 72, 18, 2;
1026, 20, 90, 240, 420, 504, 420, 240, 90, 20, 2;
- Advanced Number Theory, Harvey Cohn, Dover Books, 1963, Pages 88-89
-
A139524:= func< n,k | k eq 0 select 2+2^n else 2*Binomial(n,k) >;
[A139524(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 02 2021
-
(* First program *)
T[n_, k_]:= SeriesCoefficient[Series[2*(1+x)^n + 2^n, {x, 0, 20}], k];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 02 2021 *)
(* Second program *)
T[n_, k_]:= T[n, k] = If[k==0, 2 + 2^n, 2*Binomial[n, k]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 02 2021 *)
-
def A139524(n,k): return 2+2^n if (k==0) else 2*binomial(n,k)
flatten([[A139524(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 02 2021
A317644
Triangle read by rows: multiplicative version of Pascal's triangle except n-th row begins and ends with (n+1)-st prime.
Original entry on oeis.org
2, 3, 3, 5, 9, 5, 7, 45, 45, 7, 11, 315, 2025, 315, 11, 13, 3465, 637875, 637875, 3465, 13, 17, 45045, 2210236875, 406884515625, 2210236875, 45045, 17, 19, 765765, 99560120034375, 899311160300888671875, 899311160300888671875, 99560120034375, 765765, 19, 23, 14549535, 76239655318123171875, 89535527067809533413858673095703125, 808760563041730681160065242862701416015625, 89535527067809533413858673095703125, 76239655318123171875, 14549535, 23
Offset: 0
Triangle begins:
2;
3, 3;
5, 9, 5;
7, 45, 45, 7;
11, 315, 2025, 315, 11;
13, 3465, 637875, 637875, 3465, 13;
...
Formatted as a symmetric triangle:
.
2
.
3 3
.
5 9 5
.
7 45 45 7
.
11 315 2025 315 11
.
13 3465 637875 637875 3465 13
...
-
t = {{2}};
Table[AppendTo[
t, {Prime[i],
Table[
t[[i - 1]][[j]]*t[[i - 1]][[j + 1]], {j,
1, (t[[i - 1]] // Length) - 1}], Prime[i]} // Flatten], {i, 2, 10}] //
Last // Flatten
t={}; Do[r={}; Do[If[k==0||k==n, m=Prime[n + 1], m=t[[n, k]]t[[n, k + 1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t (* Vincenzo Librandi, Sep 03 2018 *)
Comments