cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A098832 Square array read by antidiagonals: even-numbered rows of the table are of the form n*(n+m) and odd-numbered rows are of the form n*(n+m)/2.

Original entry on oeis.org

1, 3, 3, 6, 8, 2, 10, 15, 5, 5, 15, 24, 9, 12, 3, 21, 35, 14, 21, 7, 7, 28, 48, 20, 32, 12, 16, 4, 36, 63, 27, 45, 18, 27, 9, 9, 45, 80, 35, 60, 25, 40, 15, 20, 5, 55, 99, 44, 77, 33, 55, 22, 33, 11, 11, 66, 120, 54, 96, 42, 72, 30, 48, 18, 24, 6, 78, 143, 65, 117, 52, 91, 39, 65, 26, 39, 13, 13
Offset: 1

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Nov 02 2004

Keywords

Comments

The rows of this table and that in A098737 are related. Given a function f = n/( 1 + (1+n) mod(2) ), row n of A098737 can be derived from row n of T by multiplying the latter by f(n); row n of T can be derived from row n of A098737 by dividing the latter by f(n).

Examples

			Array begins as:
  1,  3,  6, 10, 15, 21,  28,  36,  45 ... A000217;
  3,  8, 15, 24, 35, 48,  63,  80,  99 ... A005563;
  2,  5,  9, 14, 20, 27,  35,  44,  54 ... A000096;
  5, 12, 21, 32, 45, 60,  77,  96, 117 ... A028347;
  3,  7, 12, 18, 25, 33,  42,  52,  63 ... A027379;
  7, 16, 27, 40, 55, 72,  91, 112, 135 ... A028560;
  4,  9, 15, 22, 30, 39,  49,  60,  72 ... A055999;
  9, 20, 33, 48, 65, 84, 105, 128, 153 ... A028566;
  5, 11, 18, 26, 35, 45,  56,  68,  81 ... A056000;
Antidiagonals begin as:
   1;
   3,  3;
   6,  8,  2;
  10, 15,  5,  5;
  15, 24,  9, 12,  3;
  21, 35, 14, 21,  7,  7;
  28, 48, 20, 32, 12, 16,  4;
  36, 63, 27, 45, 18, 27,  9,  9;
  45, 80, 35, 60, 25, 40, 15, 20,  5;
  55, 99, 44, 77, 33, 55, 22, 33, 11, 11;
		

Crossrefs

Row m of array: A000217 (m=1), A005563 (m=2), A000096 (m=3), A028347 (m=4), A027379 (m=5), A028560 (m=6), A055999 (m=7), A028566 (m=8), A056000 (m=9), A098603 (m=10), A056115 (m=11), A098847 (m=12), A056119 (m=13), A098848 (m=14), A056121 (m=15), A098849 (m=16), A056126 (m=17), A098850 (m=18), A051942 (m=19).
Column m of array: A026741 (m=1), A022998 (m=2), A165351 (m=3).

Programs

  • Magma
    A098832:= func< n,k | (1/4)*(3+(-1)^k)*(n+1)*(n-k+1) >;
    [A098832(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 31 2022
    
  • Mathematica
    A098832[n_, k_]:= (1/4)*(3+(-1)^k)*(n+1)*(n-k+1);
    Table[A098832[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jul 31 2022 *)
  • SageMath
    def A098832(n,k): return (1/4)*(3+(-1)^k)*(n+1)*(n-k+1)
    flatten([[A098832(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Jul 31 2022

Formula

Item m of row n of T is given (in infix form) by: n T m = n * (n + m) / (1 + m (mod 2)). E.g. Item 4 of row 3 of T: 3 T 4 = 14.
From G. C. Greubel, Jul 31 2022: (Start)
A(n, k) = (1/4)*(3 + (-1)^n)*k*(k+n) (array).
T(n, k) = (1/4)*(3 + (-1)^k)*(n+1)*(n-k+1) (antidiagonal triangle).
Sum_{k=1..n} T(n, k) = (1/8)*(n+1)*( (3*n-1)*(n+1) + (1+(-1)^n)/2 ).
T(2*n-1, n) = A181900(n).
T(2*n+1, n) = 2*A168509(n+1). (End)

Extensions

Missing terms added by G. C. Greubel, Jul 31 2022

A132768 a(n) = n*(n + 26).

Original entry on oeis.org

0, 27, 56, 87, 120, 155, 192, 231, 272, 315, 360, 407, 456, 507, 560, 615, 672, 731, 792, 855, 920, 987, 1056, 1127, 1200, 1275, 1352, 1431, 1512, 1595, 1680, 1767, 1856, 1947, 2040, 2135, 2232, 2331, 2432, 2535, 2640, 2747, 2856, 2967, 3080, 3195, 3312, 3431
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = n*(n + 26).
a(n) = 2*n + a(n-1) + 25, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(26)/26 = A001008(26)/A102928(26) = 34395742267/232016584800, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 18051406831/696049754400. (End)
From G. C. Greubel, Mar 13 2022: (Start)
G.f.: x*(27 - 25*x)/(1-x)^3.
E.g.f.: x*(27 + x)*exp(x). (End)

A225948 a(0) = -1; for n>0, a(n) = numerator(1/4 - 4/n^2).

Original entry on oeis.org

-1, -15, -3, -7, 0, 9, 5, 33, 3, 65, 21, 105, 2, 153, 45, 209, 15, 273, 77, 345, 6, 425, 117, 513, 35, 609, 165, 713, 12, 825, 221, 945, 63, 1073, 285, 1209, 20, 1353, 357, 1505, 99, 1665, 437, 1833, 30, 2009, 525, 2193, 143
Offset: 0

Views

Author

Paul Curtz, May 21 2013

Keywords

Comments

Denominators are in A226008.
Fractions in lowest terms for n>0: -15/4, -3/4, -7/36, 0/1, 9/100, 5/36, 33/196, 3/16, 65/324, 21/100, 105/484, 2/9, 153/676, 45/196, 209/900, 15/64,...
If t(n) is the sequence with period 8: 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, ... (see A226044), then A226008(n) = 4*a(n) + t(n).

Crossrefs

Programs

  • Magma
    [-1] cat [Numerator(1/4-4/n^2): n in [1..50]]; // Bruno Berselli, May 22 2013
    
  • Mathematica
    Join[{-1}, Table[Numerator[1/4 - 4/n^2], {n, 50}]] (* Bruno Berselli, May 24 2013 *)
  • PARI
    concat([-1], vector(100, n, numerator(1/4 - 4/n^2))) \\ G. C. Greubel, Sep 19 2018

Formula

a(n) = 3*a(n-8) -3*a(n-16) +a(n-24).
a(2n) = A061037(n), a(2n+1) = A145923(n-2) for A145923(-2)=-15, A145923(-1)=-7.
a(4n) = A142705(n) for A142705(0)=-1, a(8n) = A000466(n);
a(4n+1) = A028566(4n-3) for A028566(-3)=-15;
a(4n+2) = A078371(n-1) for A078371(-1)=-3;
a(4n+3) = A028566(4n-1) for A028566(-1)=-7.
a(n+4) = A106609(n) * A106609(n+8).
G.f.: -(1 +15*x +3*x^2 +7*x^3 -9*x^5 -5*x^6 -33*x^7 -6*x^8 -110*x^9 -30*x^10 -126*x^11 -2*x^12 -126*x^13 -30*x^14 -110*x^15 -3*x^16 -33*x^17 -5*x^18 -9*x^19 +7*x^21 +3*x^22 +15*x^23)/(1-x^8)^3. - Bruno Berselli, May 22 2013
a(n) = (n^2-16)*(6*cos(Pi*n/4)-54*cos(Pi*n/2)+6*cos(3*Pi*n/4)-219*(-1)^n+293)/512. - Bruno Berselli, May 22 2013
a(n+10) = a(n+2)*(n+14)/(n-2) for n=0,1 and n>2. - Bruno Berselli, May 22 2013

Extensions

Edited by Bruno Berselli, May 22 2013

A132769 a(n) = n*(n + 27).

Original entry on oeis.org

0, 28, 58, 90, 124, 160, 198, 238, 280, 324, 370, 418, 468, 520, 574, 630, 688, 748, 810, 874, 940, 1008, 1078, 1150, 1224, 1300, 1378, 1458, 1540, 1624, 1710, 1798, 1888, 1980, 2074, 2170, 2268, 2368, 2470, 2574, 2680, 2788, 2898, 3010, 3124, 3240, 3358, 3478
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 26, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=28, a(2)=58; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Oct 14 2012
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(27)/27 = A001008(27)/A102928(27) = 312536252003/2168462696400, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/27 - 57128792093/2168462696400. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: 2*x*(14 - 13*x)/(1 - x)^3.
E.g.f.: exp(x)*x*(28 + x).
a(n) = 2*A132756(n). (End)

A105020 Array read by antidiagonals: row n (n >= 0) contains the numbers m^2 - n^2, m >= n+1.

Original entry on oeis.org

1, 3, 4, 5, 8, 9, 7, 12, 15, 16, 9, 16, 21, 24, 25, 11, 20, 27, 32, 35, 36, 13, 24, 33, 40, 45, 48, 49, 15, 28, 39, 48, 55, 60, 63, 64, 17, 32, 45, 56, 65, 72, 77, 80, 81, 19, 36, 51, 64, 75, 84, 91, 96, 99, 100, 21, 40, 57, 72, 85, 96, 105, 112, 117, 120, 121
Offset: 0

Views

Author

Keywords

Comments

A "Goldbach Conjecture" for this sequence: when there are n terms between consecutive odd integers (2n+1) and (2n+3) for n > 0, at least one will be the product of 2 primes (not necessarily distinct). Example: n=3 for consecutive odd integers a(7)=7 and a(11)=9 and of the 3 sequence entries a(8)=12, a(9)=15 and a(10)=16 between them, one is the product of 2 primes a(9)=15=3*5. - Michael Hiebl, Jul 15 2007
A024352 gives distinct values in the array, minus the first row (1, 4, 9, 16, etc.). a(n) gives all solutions to the equation x^2 + xy = n, with y mod 2 = 0, x > 0, y >= 0. - Andrew S. Plewe, Oct 19 2007
Alternatively, triangular sequence of coefficients of Dynkin diagram weights for the Cartan groups C_n: t(n,m) = m*(2*n - m). Row sums are A002412. - Roger L. Bagula, Aug 05 2008

Examples

			Array begins:
  1  4  9 16 25 36  49  64  81 100 ...
  3  8 15 24 35 48  63  80  99 120 ...
  5 12 21 32 45 60  77  96 117 140 ...
  7 16 27 40 55 72  91 112 135 160 ...
  9 20 33 48 65 84 105 128 153 180 ...
  ...
Triangle begins:
   1;
   3,  4;
   5,  8,  9;
   7, 12, 15, 16;
   9, 16, 21, 24, 25;
  11, 20, 27, 32, 35, 36;
  13, 24, 33, 40, 45, 48, 49;
  15, 28, 39, 48, 55, 60, 63, 64;
  17, 32, 45, 56, 65, 72, 77, 80, 81;
  19, 36, 51, 64, 75, 84, 91, 96, 99, 100;
		

References

  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.

Crossrefs

Programs

  • Magma
    [(k+1)*(2*n-k+1): k in [0..n], n in [0..15]]; // G. C. Greubel, Mar 15 2023
    
  • Mathematica
    t[n_, m_]:= (n^2 - m^2); Flatten[Table[t[i, j], {i,12}, {j,i-1,0,-1}]]
    (* to view table *) Table[t[i, j], {j,0,6}, {i,j+1,10}]//TableForm (* Robert G. Wilson v, Jul 11 2005 *)
    Table[(k+1)*(2*n-k+1), {n,0,15}, {k,0,n}]//Flatten (* Roger L. Bagula, Aug 05 2008 *)
  • SageMath
    def A105020(n,k): return (k+1)*(2*n-k+1)
    flatten([[A105020(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Mar 15 2023

Formula

a(n) = r^2 - (r^2 + r - m)^2/4, where r = round(sqrt(m)) and m = 2*n+2. - Wesley Ivan Hurt, Sep 04 2021
a(n) = A128076(n+1) * A105020(n+1). - Wesley Ivan Hurt, Jan 07 2022
From G. C. Greubel, Mar 15 2023: (Start)
Sum_{k=0..n} T(n, k) = A002412(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*((1+(-1)^n)*A000384((n+2)/2) - (1- (-1)^n)*A000384((n+1)/2)). (End)

Extensions

More terms from Robert G. Wilson v, Jul 11 2005

A132770 a(n) = n*(n + 28).

Original entry on oeis.org

0, 29, 60, 93, 128, 165, 204, 245, 288, 333, 380, 429, 480, 533, 588, 645, 704, 765, 828, 893, 960, 1029, 1100, 1173, 1248, 1325, 1404, 1485, 1568, 1653, 1740, 1829, 1920, 2013, 2108, 2205, 2304, 2405, 2508, 2613, 2720, 2829, 2940, 3053, 3168, 3285, 3404, 3525
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 27, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(28)/28 = A001008(28)/A102928(28) = 315404588903/2248776129600, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 7751493599/321253732800. (End)
G.f.: x*(29 - 27*x)/(1-x)^3. - Harvey P. Dale, Aug 03 2021
E.g.f.: x*(29 + x)*exp(x). - G. C. Greubel, Mar 13 2022

A132771 a(n) = n*(n + 29).

Original entry on oeis.org

0, 30, 62, 96, 132, 170, 210, 252, 296, 342, 390, 440, 492, 546, 602, 660, 720, 782, 846, 912, 980, 1050, 1122, 1196, 1272, 1350, 1430, 1512, 1596, 1682, 1770, 1860, 1952, 2046, 2142, 2240, 2340, 2442, 2546, 2652, 2760, 2870, 2982, 3096, 3212, 3330, 3450, 3572
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 28 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(29)/29 = A001008(29)/A102928(29) = 9227046511387/67543597321200, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/29 - 236266661971/9649085331600. (End)
From G. C. Greubel, Mar 13 2022: (Start)
G.f.: 2*(15*x - 14*x^2)/(1-x)^3.
E.g.f.: x*(30 + x)*exp(x). (End)

A164009 Zero together with row 9 of the array in A163280.

Original entry on oeis.org

0, 19, 38, 51, 76, 75, 114, 105, 136, 162, 190, 209, 264, 273, 308, 345, 384, 425, 468, 513, 560, 609, 660, 713, 768, 825, 884, 945, 1008, 1073, 1140, 1209, 1280, 1353, 1428, 1505, 1584, 1665, 1748, 1833, 1920, 2009, 2100, 2193, 2288, 2385, 2484, 2585, 2688
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n), list)) ; op(floor((nops(dvs)+1)/2) , dvs) ; end proc:
    A163280 := proc(n, k) local r, T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then return T ; end if; end if; end do: end proc:
    printf("0, ") ; for n from 1 to 90 do printf("%d, ", A163280(9, n)) ; end do ; # R. J. Mathar, Jul 31 2010

Formula

Conjecture: a(n) = A028566(n), n > 12. [R. J. Mathar, Jul 31 2010]

Extensions

Terms beyond a(12) from R. J. Mathar, Jul 31 2010

A132772 a(n) = n*(n + 30).

Original entry on oeis.org

0, 31, 64, 99, 136, 175, 216, 259, 304, 351, 400, 451, 504, 559, 616, 675, 736, 799, 864, 931, 1000, 1071, 1144, 1219, 1296, 1375, 1456, 1539, 1624, 1711, 1800, 1891, 1984, 2079, 2176, 2275, 2376, 2479, 2584, 2691, 2800, 2911, 3024, 3139, 3256, 3375, 3496, 3619
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

G.f.: x*(31-29*x)/(1-x)^3. - R. J. Mathar, Nov 14 2007
a(n) = 2*n + a(n-1) + 29 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=31, a(2)=64, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Mar 06 2015
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(30)/30 = A001008(30)/A102928(30) = 9304682830147/69872686884000, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 225175759291/9981812412000. (End)
E.g.f.: x*(31 + x)*exp(x). - G. C. Greubel, Mar 13 2022

A028568 Palindromes of the form k*(k+8).

Original entry on oeis.org

0, 9, 33, 4884, 8448, 9009, 31313, 48384, 52425, 82928, 88788, 489984, 505505, 861168, 5013105, 8020208, 48999984, 88322388, 801909108, 902101209, 3305445033, 4899999984, 8807447088, 35565056553, 52065656025, 58129692185, 80532223508, 88892229888, 357468864753
Offset: 1

Views

Author

Keywords

Comments

For i >= 0, 48(99)^{2*i}84 is a term arising from k = 69^i6, where ^ is repeated concatenation. - Michael S. Branicky, Jan 30 2022

Crossrefs

Intersection of A002113 and A028566.
Cf. A028567.

Programs

  • Mathematica
    Select[Table[k(k+8),{k,0,600000}],PalindromeQ] (* Harvey P. Dale, Jun 24 2023 *)

Formula

a(n) = A028567(n) * (A028567(n) + 8). - Michael S. Branicky, Jan 30 2022

Extensions

a(26) and beyond from Michael S. Branicky, Jan 30 2022
Previous Showing 11-20 of 24 results. Next