cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A164722 Numbers whose sum of distinct prime factors is a square.

Original entry on oeis.org

1, 14, 28, 39, 46, 55, 56, 66, 92, 94, 98, 112, 117, 132, 155, 158, 183, 184, 186, 188, 196, 198, 203, 224, 255, 264, 275, 290, 291, 295, 299, 316, 323, 334, 351, 354, 368, 372, 376, 392, 396, 446, 448, 455, 506, 507, 528, 546, 549, 558, 579, 580, 583, 594
Offset: 1

Views

Author

Jonathan Vos Post, Aug 23 2009

Keywords

Comments

This is to A008472 as A051448 is to A001414. It does seem that for any given k there should be a maximum n such that the sum of the prime factors of n = k^2, and a (perhaps different) maximum n such that the sum of distinct prime factors on n = k^2.
If k >= 3 and p = k^2 - 2 is prime (see A028870) then 2 * p is the term. - Marius A. Burtea, Jun 12 2019

Examples

			a(7) = 66 because 66 = 2 * 3 * 11 has sum of distinct prime factors 2 + 3 + 11 = 16 = 4^2. 8748 = 2^2 * 3^7 is the largest number whose prime factors (with multiplicity) add to 25 = 5^2, but it is not in this sequence because the sum of distinct prime factors of 8748 is 2 + 3 = 5, which is not a square.
		

Crossrefs

Programs

  • Magma
    [n:n in [1..600]| IsPower(&+PrimeDivisors(n), 2)]; // Marius A. Burtea, Jun 12 2019
  • Mathematica
    Select[Range[600],IntegerQ[Sqrt[Total[Transpose[FactorInteger[#]] [[1]]]]]&] (* Harvey P. Dale, Mar 05 2014 *)
  • PARI
    isOK(n) = local(fac, i); fac = factor(n); issquare(sum(i=1, matsize(fac)[1], fac[i, 1])); \\ Michel Marcus, Mar 19 2013
    

Formula

{n such that A008472(n) = k^2 for k an integer}.
{n such that A008472(n) is in A000290}.

Extensions

More terms (including missing terms 56, 183, and 196) from Jon E. Schoenfield, May 27 2010

A088572 Numbers n such that (2n+1)^2 - 2 is prime.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 10, 13, 14, 16, 17, 18, 21, 23, 24, 27, 30, 31, 34, 35, 37, 38, 44, 46, 51, 53, 58, 59, 60, 63, 65, 67, 69, 72, 77, 80, 84, 86, 88, 91, 95, 102, 105, 108, 111, 115, 116, 118, 119, 123, 126, 128, 129, 132, 133, 136, 139, 142, 146, 149, 150, 151, 154, 156, 157
Offset: 1

Views

Author

Herman H. Rosenfeld (herm3(AT)pacbell.net), Nov 17 2003

Keywords

Crossrefs

Programs

A154933 Numbers k such that k^6 - 2 is prime.

Original entry on oeis.org

3, 11, 17, 35, 37, 47, 49, 59, 67, 77, 99, 123, 127, 133, 139, 155, 161, 169, 173, 187, 195, 213, 225, 231, 237, 241, 245, 247, 253, 275, 279, 297, 319, 325, 367, 373, 381, 383, 385, 399, 411, 425, 431, 469, 507, 511, 523, 541, 545, 553, 569, 585, 589, 609
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n^6-2;If[PrimeQ[p],AppendTo[lst,n]],{n,1,7!}];lst
  • PARI
    isA154933(n) = isprime(n^6-2) \\ Michael B. Porter, Oct 06 2009

Extensions

a(1) = 0 removed by Amiram Eldar, Apr 04 2020

A154935 Numbers n such that n^7-2 is prime.

Original entry on oeis.org

7, 15, 25, 87, 91, 99, 199, 211, 265, 337, 357, 361, 367, 405, 501, 511, 537, 595, 627, 685, 697, 771, 805, 841, 847, 861, 889, 931, 939, 979, 1035, 1047, 1081, 1125, 1135, 1177, 1225, 1231, 1287, 1315, 1321, 1387, 1425, 1497, 1501, 1627, 1741, 1795, 1807
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..500]|IsPrime(n^7-2)]; // Vincenzo Librandi, Nov 26 2010
    
  • Mathematica
    lst={};Do[p=n^7-2;If[PrimeQ[p],AppendTo[lst,n]],{n,0,7!}];lst
    Select[Range[2*10^3], PrimeQ[#^7 - 2] &] (* Vincenzo Librandi, Mar 20 2014 *)
  • PARI
    is(n)=isprime(n^7-2) \\ Charles R Greathouse IV, Feb 17 2017

A239413 Numbers n such that n^5-5 is prime.

Original entry on oeis.org

4, 12, 16, 42, 102, 124, 132, 144, 184, 232, 274, 288, 306, 316, 336, 352, 406, 438, 478, 582, 606, 622, 706, 742, 754, 762, 814, 832, 916, 922, 964, 984, 996, 1026, 1044, 1072, 1086, 1096, 1156, 1174, 1204, 1258, 1272, 1366, 1408, 1416, 1428, 1432, 1456
Offset: 1

Views

Author

Derek Orr, Mar 17 2014

Keywords

Comments

Note that all the numbers in this sequence are even.
There is no sequence "Numbers n such that n^4-4 is prime." since n^4 - 4 = (n^2 + 2)(n^2 - 2). - Michael B. Porter, Mar 18 2014

Examples

			4^5-5 = 1019 is prime. Thus, 4 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1500],PrimeQ[#^5-5]&] (* Harvey P. Dale, Dec 30 2019 *)
  • PARI
    is(n)=isprime(n^5-5) \\ Charles R Greathouse IV, Feb 17 2017
  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**4) if isprime(n**5-5)}
    

A154934 Primes in A154933.

Original entry on oeis.org

3, 11, 17, 37, 47, 59, 67, 127, 139, 173, 241, 367, 373, 383, 431, 523, 541, 569, 613, 631, 673, 683, 691, 829, 967, 977, 1019, 1063, 1163, 1213, 1249, 1291, 1301, 1303, 1327, 1367, 1439, 1483, 1487, 1601, 1607, 1609, 1733, 1747, 1789, 1801, 1823, 1907
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={}; Do[p=n^6-2; If[PrimeQ[p], If[PrimeQ[n], AppendTo[lst,n]]], {n,0,3*7!}]; lst

A239415 Numbers n such that n^7-7 is prime.

Original entry on oeis.org

60, 66, 132, 212, 242, 246, 290, 296, 312, 326, 380, 384, 446, 516, 524, 554, 654, 704, 740, 782, 834, 1026, 1086, 1142, 1154, 1172, 1182, 1214, 1424, 1430, 1464, 1482, 1494, 1500, 1524, 1604, 1682, 1686, 1752, 1794, 1796, 1844, 1854, 1940, 1952, 1980, 2000, 2010
Offset: 1

Views

Author

Derek Orr, Mar 17 2014

Keywords

Comments

Note that all the numbers in this sequence are even.

Examples

			60^7-7 = 2799359999993 is prime. Thus, 60 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2500],PrimeQ[#^7-7]&] (* Harvey P. Dale, Dec 21 2022 *)
  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**4) if isprime(n**7-7)}

A239416 Numbers n such that n^8-8 is prime.

Original entry on oeis.org

3, 7, 19, 39, 73, 75, 101, 107, 145, 147, 171, 213, 235, 247, 263, 285, 319, 353, 359, 369, 399, 443, 445, 521, 523, 557, 613, 675, 693, 707, 733, 781, 791, 805, 815, 829, 837, 879, 927, 943, 961, 999, 1033, 1097, 1103, 1109, 1129, 1137, 1141, 1155, 1157
Offset: 1

Views

Author

Derek Orr, Mar 17 2014

Keywords

Comments

Note that all the numbers in this sequence are odd.

Examples

			3^8-8 = 6553 is prime. Thus, 3 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3,1200,2],PrimeQ[#^8-8]&] (* Harvey P. Dale, Jun 27 2014 *)
  • PARI
    is(n)=isprime(n^8-8) \\ Charles R Greathouse IV, Feb 20 2017
  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**4) if isprime(n**8-8)}
    

A239417 Numbers n such that n^9-9 is prime.

Original entry on oeis.org

2, 62, 86, 88, 116, 152, 266, 292, 310, 326, 338, 356, 406, 436, 466, 470, 518, 550, 568, 616, 626, 650, 688, 700, 722, 812, 850, 926, 956, 992, 1058, 1076, 1126, 1186, 1252, 1430, 1550, 1570, 1642, 1672, 1682, 1766, 1808, 1852, 1868, 1888, 2138, 2210, 2306
Offset: 1

Views

Author

Derek Orr, Mar 17 2014

Keywords

Comments

Note that all numbers in this sequence are even.

Examples

			2^9-9 = 503 is prime. Thus, 2 is a member of this sequence.
		

Crossrefs

Programs

  • PARI
    is(n)=isprime(n^9-9) \\ Charles R Greathouse IV, Feb 20 2017
  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**4) if isprime(n**9-9)}
    

A239418 Numbers n such that n^10 - 10 is prime.

Original entry on oeis.org

21, 201, 267, 321, 369, 459, 537, 651, 669, 699, 723, 753, 1071, 1113, 1197, 1203, 1209, 1323, 1401, 1503, 1587, 1647, 1773, 1791, 1797, 1917, 1941, 2007, 2139, 2223, 2427, 2493, 2613, 2733, 2769, 2787, 2847, 3147, 3249, 3267, 3297, 3399, 3423, 3441, 3771
Offset: 1

Views

Author

Derek Orr, Mar 17 2014

Keywords

Comments

All of the numbers in this sequence are odd multiples of 3 and, thus, congruent to 3 (mod 6).
The tenth powers modulo 6 are 1, 4, 3, 4, 1, 0, ... (A070431). Subtracting 10 (still modulo 6), we get 3, 0, 5, 0, 3, 2, ... which means that only n = 3 mod 6 can produce a potential prime p = 5 mod 6.

Examples

			21^10 - 10 = 16679880978191 is prime. Thus, 21 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[#^10 - 10] &] (* Alonso del Arte, Mar 18 2014 *)
  • PARI
    is(n)=isprime(n^10-10) \\ Charles R Greathouse IV, Feb 20 2017
  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**4) if isprime(n**10-10)}
    
Previous Showing 11-20 of 36 results. Next