cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-46 of 46 results.

A241537 Cubes c such that c + 1234567890 is prime where 1234567890 is the first pandigital number with digits in order.

Original entry on oeis.org

1, 50653, 79507, 456533, 571787, 1295029, 1685159, 1771561, 2248091, 2685619, 3307949, 4173281, 7880599, 9393931, 10218313, 10793861, 11697083, 17373979, 18191447, 22665187, 30664297, 47045881, 70444997, 111284641, 146363183, 151419437, 156590819, 192100033
Offset: 1

Views

Author

K. D. Bajpai, Apr 25 2014

Keywords

Examples

			50653 = 37^3 and appears in the sequence because 50653 + 1234567890 = 1234618543, which is prime.
79507 = 43^3  and appears in the sequence because 79507 + 1234567890 = 1234647397, which is prime.
64000 = 40^3 but not included in the sequence since 64000 + 1234567890 = 1234631890 = (2)*(5)*(29389)*(4201), which is not prime.
		

Crossrefs

Programs

  • Maple
    KD := proc() local a,c; c:=n^3;a:=c+1234567890; if isprime(a) then RETURN (c); fi; end: seq(KD(), n=1..1000);
  • Mathematica
    lst={}; Do[c=n^3; If[PrimeQ[c+1234567890], AppendTo[lst,c]], {n,1,1000}]; lst
    (*For the b-file*)  m=0; c=n^3; a=c+1234567890; Do[If[PrimeQ[a],m++; Print[m," ",c]], {n,1,4*10^5}]
  • PARI
    s=[]; for(n=1, 1000, c=n^3; if(isprime(c+1234567890), s=concat(s, c))); s \\ Colin Barker, Apr 25 2014

A241538 Squares s such that s + 1234567890 is prime.

Original entry on oeis.org

1, 169, 1681, 6889, 8281, 11881, 24649, 27889, 41209, 57121, 58081, 67081, 80089, 101761, 124609, 175561, 185761, 201601, 212521, 332929, 380689, 413449, 461041, 508369, 534361, 609961, 625681, 654481, 683929, 693889, 822649, 829921, 833569, 1014049, 1018081
Offset: 1

Views

Author

K. D. Bajpai, Apr 25 2014

Keywords

Comments

1234567890 is the first pandigital number with digits in order.

Examples

			169 = 13^2 and appears in the sequence because 169 + 1234567890 = 1234568059, which is prime.
1681 = 41^2  and appears in the sequence because 1681 + 1234567890 = 1234569571, which is prime.
625 = 25^2 but is not included in the sequence since 625 + 1234567890 = 1234568515 = (5)*(246913703), which is not prime.
		

Crossrefs

Programs

  • Maple
    KD := proc() local a,s; s:=n^2;a:=s+1234567890; if isprime(a) then RETURN (s); fi; end: seq(KD(), n=1..2000);
  • Mathematica
    A241538 = {}; Do[s = n^2; If[PrimeQ[s + 1234567890], AppendTo[A241538, s]], {n, 2000}]; A241538
    (* For the b-file *) c = 0; s = n^2; a = s + 1234567890; Do[If[PrimeQ[a], c++; Print[c, " ", s]], {n, 4*10^5}] (* Bajpai *)
    Select[Range[1000]^2, PrimeQ[# + 1234567890] &] (* Alonso del Arte, Apr 25 2014 *)

A271725 T(n,k) is an array read by rows, with n > 0 and k=1..4, where row n gives four prime numbers in increasing order with locations in right angles of each concentric square drawn on a distorted version of the Ulam spiral.

Original entry on oeis.org

3, 7, 17, 19, 13, 23, 37, 41, 307, 359, 401, 419, 13807, 14159, 14401, 14519, 41413, 42023, 42437, 42641, 6317683, 6325223, 6330257, 6332771, 22958473, 22972847, 22982437, 22987229, 39081253, 39100007, 39112517, 39118769, 110617807, 110649359, 110670401, 110680919
Offset: 1

Views

Author

Michel Lagneau, Apr 13 2016

Keywords

Comments

See the illustration for more information.
Conjecture: there is an infinity of concentric squares having a prime number in each right angle. The number 5 is the center of all the squares.
It seems that the drawing of an infinite number of concentric squares having a prime number in each corner is impossible in an Ulam spiral. But with a slight distortion of this space, the problem becomes possible.
The illustration (see the link) shows the new version of a spiral with two remarkable orthogonal diagonals containing four classes of prime numbers given by the sequences A125202, A121326, A028871 and A073337 supported by four line segments. These intersect at a single point represented by the prime number 5.
The sequence of the corresponding length of the sides is {s(k)} = {2, 4, 18, 118, 204, 2514, 4792, 6252, 10518, 14032, 16752, 17598, ...}
The primes are defined by the polynomials: [4*m^2-10*m+7, (2*m-1)^2-2, 4*m^2+1, 4*(m+1)^2-6*(m+1)+1]. The sequence of the corresponding m is {b(k)} = {2, 3, 10, 60, 103, 1258, 2397, 3127, 5260, 7017, 8377, 8800, 10375, 11518, 11523, 12498, 15415, 15888, ...} with the relation b(k) = 1 + s(k)/2.
The array begins:
3, 7, 17, 19;
13, 23, 37, 41;
307, 359, 401, 419;
13807, 14159, 14401, 14519;
41413, 42023, 42437, 42641;
...
Construction of the spiral (see the illustration in the link):
. . . . . . . . . . . .
. 42 41 40 39 38 37 . . .
|
. 43 20 19 18 17 36 35 . .
|
. . 21 6 5 16 15 34 . .
|
. . 22 7 4 3 14 33 . .
. . 23 8 1 2 13 32 . .
. . 24 9 10 11 12 31 . .
. . 25 26 27 28 29 30 . .
. . . . . . . . . . .
The first squares of center 5 having a prime number in each vertex are:
19 18 17 41 40 39 38 37
6 5 16 20 19 18 17 36
7 4 3 21 6 5 16 15 . . . .
22 7 4 3 14
23 8 1 2 13

Crossrefs

Programs

  • Maple
    for n from 1 to 10000 do :
      x1:=4*n^2-10*n+7:x2:=(2*n-1)^2-2:
      x3:=4*(n+1)^2-6*(n+1)+1:x4:=4*n^2+1:
       if isprime(x1) and isprime(x2) and isprime(x3) and isprime(x4)
        then
         printf("%d %d %d %d %d \n",n,x1,x2,x4,x3):
        else
        fi:
    od:

A293620 Numbers k such that f(k), f(k+1) and f(k+2) are all primes, where f(k) = (2k+1)^2 - 2 (A073577).

Original entry on oeis.org

1, 2, 16, 58, 149, 177, 534, 681, 954, 1045, 1052, 1255, 1367, 1563, 2046, 2074, 2515, 2557, 2564, 2788, 3586, 3593, 3908, 4062, 4552, 5252, 5371, 5385, 6400, 6729, 7443, 7478, 9305, 9375, 9942, 10355, 10411, 10726, 10740, 11286, 11545, 11559, 11832, 11965
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2017

Keywords

Comments

Sierpiński proved that under Schinzel's hypothesis H this sequence is infinite.
Sierpiński showed that the only quadruple of consecutive primes of the form (2k+1)^2 - 2 are for k = 1 (i.e., 1 and 2 are the only consecutive terms in this sequence).
Numbers k such that the 3 consecutive integers k, k+1 and k+2 belong to A088572. - Michel Marcus, Oct 13 2017

Examples

			The first triples are: k = 1: (7, 23, 47), k = 2: (23, 47, 79), k = 16: (1087, 1223, 1367).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4], AllTrue[{(2#+1)^2-2, (2#+3)^2-2, (2#+5)^2-2},PrimeQ] &]
    SequencePosition[Table[If[PrimeQ[(2k+1)^2-2],1,0],{k,12000}],{1,1,1}][[;;,1]] (* Harvey P. Dale, Feb 09 2025 *)
  • PARI
    f(n) = 4*n^2 + 4*n - 1;
    isok(n) = isprime(f(n)) && isprime(f(n+1)) && isprime(f(n+2)); \\ Michel Marcus, Oct 13 2017

A163159 Fibonacci numbers F such that F^2-2 is prime.

Original entry on oeis.org

2, 3, 5, 13, 21, 55, 89, 233, 987, 1597, 5702887, 1836311903, 99194853094755497, 26925748508234281076009, 184551825793033096366333, 468340976726457153752543329995929, 30010821454963453907530667147829489881, 1188518561323126046432205871807859915657177
Offset: 1

Views

Author

Keywords

Comments

In condensed representation: The A000045(i) at i = 3, 4, 5, 7, 8, 10, 11, 13, 16, 17, 34, 46,... [R. J. Mathar, Jul 25 2009]

Examples

			2^2-2=2. 3^2-2=7. 5^2-2=23.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Fibonacci[n]; f2[n_]:=f[n]^2-2; lst={};Do[If[PrimeQ[f2[n]],AppendTo[lst, f[n]]],{n,6!}];lst
    Select[Fibonacci[Range[400]],PrimeQ[#^2-2]&] (* Harvey P. Dale, Oct 21 2011 *)

Formula

{A000045(i): A008865(A000045(i)) in A000040}. [R. J. Mathar, Jul 25 2009]

Extensions

More terms from Harvey P. Dale, Oct 21 2011

A348425 Squares whose second arithmetic derivative is a square.

Original entry on oeis.org

0, 1, 4, 49, 529, 2209, 6241, 27889, 28561, 35344, 49729, 128881, 192721, 250000, 431649, 528529, 703921, 1181569, 1495729, 1610361, 1868689, 3411409, 4870849, 5755201, 9138529, 11390625, 12250000, 13830961, 13845841, 15737089, 22648081, 25391521, 31618129
Offset: 1

Views

Author

Marius A. Burtea, Oct 18 2021

Keywords

Comments

For prime numbers of the form p = k^2 - 2 (A028871) the number m = p^2 is a term because m'' = (p^2)'' = (2*p*p')' = (2*p)'= p + 2*p' = p + 2 = k^2.
If m is a term in A028873 then p = m^2 - 3 is prime and k = p^4 is a term. Indeed: k' = 4*p^3 and k'' = 4*p^3 + 12*p^2 = 4*p^2*(p + 3) = 4*p^2*m^2.
If m is a term in A201787 then p = 5*m^2 - 6 is prime and k = p^6 is a term. Indeed: k' = 6*p^5 and k'' = 5*p^5 + 30*p^4 = 5*p^4*(p + 6) = 25*p^4*m^2.

Examples

			4'' = 4' = 4 so 4 is a term.
49'' = 14' = 9 so 49 is a term.
		

Crossrefs

Programs

  • Magma
    f:=func; [n:n in [s*s:s in [0.. 5623]] | IsSquare(Floor(f(Floor(f(n)))))];
    
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[0, 6000]^2, IntegerQ @ Sqrt[d[d[#]]] &] (* Amiram Eldar, Oct 18 2021 *)
  • PARI
    ad(n) = if (n<1, 0, my(f = factor(n)); n*sum(k=1, #f~, f[k, 2]/f[k, 1])); \\ A003415
    lista(nn) = {for (n=0, nn, if (issquare(ad(ad(n^2))), print1(n^2, ", ")); ); } \\ Michel Marcus, Oct 30 2021
Previous Showing 41-46 of 46 results.