A262065
Numbers that are palindromes in base-60 representation.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 122, 183, 244, 305, 366
Offset: 1
. n | a(n) | base 60 n | a(n) | base 60
. -----+------+----------- ------+-------+--------------
. 100 | 2440 | [40, 40] 1000 | 56415 | [15, 40, 15]
. 101 | 2501 | [41, 41] 1001 | 56475 | [15, 41, 15]
. 102 | 2562 | [42, 42] 1002 | 56535 | [15, 42, 15]
. 103 | 2623 | [43, 43] 1003 | 56595 | [15, 43, 15]
. 104 | 2684 | [44, 44] 1004 | 56655 | [15, 44, 15]
. 105 | 2745 | [45, 45] 1005 | 56715 | [15, 45, 15]
. 106 | 2806 | [46, 46] 1006 | 56775 | [15, 46, 15]
. 107 | 2867 | [47, 47] 1007 | 56835 | [15, 47, 15]
. 108 | 2928 | [48, 48] 1008 | 56895 | [15, 48, 15]
. 109 | 2989 | [49, 49] 1009 | 56955 | [15, 49, 15]
. 110 | 3050 | [50, 50] 1010 | 57015 | [15, 50, 15]
. 111 | 3111 | [51, 51] 1011 | 57075 | [15, 51, 15]
. 112 | 3172 | [52, 52] 1012 | 57135 | [15, 52, 15]
. 113 | 3233 | [53, 53] 1013 | 57195 | [15, 53, 15]
. 114 | 3294 | [54, 54] 1014 | 57255 | [15, 54, 15]
. 115 | 3355 | [55, 55] 1015 | 57315 | [15, 55, 15]
. 116 | 3416 | [56, 56] 1016 | 57375 | [15, 56, 15]
. 117 | 3477 | [57, 57] 1017 | 57435 | [15, 57, 15]
. 118 | 3538 | [58, 58] 1018 | 57495 | [15, 58, 15]
. 119 | 3599 | [59, 59] 1019 | 57555 | [15, 59, 15]
. 120 | 3601 | [1, 0, 1] 1020 | 57616 | [16, 0, 16]
. 121 | 3661 | [1, 1, 1] 1021 | 57676 | [16, 1, 16]
. 122 | 3721 | [1, 2, 1] 1022 | 57736 | [16, 2, 16]
. 123 | 3781 | [1, 3, 1] 1023 | 57796 | [16, 3, 16]
. 124 | 3841 | [1, 4, 1] 1024 | 57856 | [16, 4, 16]
. 125 | 3901 | [1, 5, 1] 1025 | 57916 | [16, 5, 16] .
Corresponding sequences for bases 2 through 12:
A006995,
A014190,
A014192,
A029952,
A029953,
A029954,
A029803,
A029955,
A002113,
A029956,
A029957.
-
import Data.List.Ordered (union)
a262065 n = a262065_list !! (n-1)
a262065_list = union us vs where
us = [val60 $ bs ++ reverse bs | bs <- bss]
vs = [0..59] ++ [val60 $ bs ++ cs ++ reverse bs |
bs <- tail bss, cs <- take 60 bss]
bss = iterate s [0] where
s [] = [1]; s (59:ds) = 0 : s ds; s (d:ds) = (d + 1) : ds
val60 = foldr (\b v -> 60 * v + b) 0
-
[n: n in [0..600] | Intseq(n, 60) eq Reverse(Intseq(n, 60))]; // Vincenzo Librandi, Aug 24 2016
-
f[n_, b_]:=Module[{i=IntegerDigits[n, b]}, i==Reverse[i]]; lst={}; Do[If[f[n, 60], AppendTo[lst, n]], {n, 400}]; lst (* Vincenzo Librandi, Aug 24 2016 *)
pal60Q[n_]:=Module[{idn60=IntegerDigits[n,60]},idn60==Reverse[idn60]]; Select[Range[0,400],pal60Q] (* Harvey P. Dale, Nov 04 2017 *)
-
isok(m) = my(d=digits(m, 60)); d == Vecrev(d); \\ Michel Marcus, Jan 22 2022
-
from sympy import integer_log
from gmpy2 import digits, mpz
def A262065(n):
if n == 1: return 0
y = 60*(x:=60**integer_log(n>>1,60)[0])
return int((c:=n-x)*x+mpz(digits(c,60)[-2::-1]or'0',60) if nChai Wah Wu, Jun 13-14 2024
A342725
Numbers that are palindromic in base i-1.
Original entry on oeis.org
0, 1, 13, 17, 189, 205, 257, 273, 3005, 3069, 3277, 3341, 4033, 4097, 4305, 4369, 48061, 48317, 49149, 49405, 52173, 52429, 53261, 53517, 64449, 64705, 65537, 65793, 68561, 68817, 69649, 69905, 768957, 769981, 773309, 774333, 785405, 786429, 789757, 790781, 834509
Offset: 1
Similar sequences:
A002113 (decimal),
A006995 (binary),
A014190 (base 3),
A014192 (base 4),
A029952 (base 5),
A029953 (base 6),
A029954 (base 7),
A029803 (base 8),
A029955 (base 9),
A046807 (factorial base),
A094202 (Zeckendorf),
A331191 (dual Zeckendorf),
A331891 (negabinary),
A333423 (primorial base).
-
v = {{0, 0, 0, 0}, {0, 0, 0, 1}, {1, 1, 0, 0}, {1, 1, 0, 1}}; q[n_] := PalindromeQ @ FromDigits[Flatten @ v[[1 + Reverse @ Most[Mod[NestWhileList[(# - Mod[#, 4])/-4 &, n, # != 0 &], 4]]]]]; Select[Range[0, 10^4], q]
A297265
Numbers whose base-8 digits have equal down-variation and up-variation; see Comments.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 9, 18, 27, 36, 45, 54, 63, 65, 73, 81, 89, 97, 105, 113, 121, 130, 138, 146, 154, 162, 170, 178, 186, 195, 203, 211, 219, 227, 235, 243, 251, 260, 268, 276, 284, 292, 300, 308, 316, 325, 333, 341, 349, 357, 365, 373, 381, 390, 398, 406
Offset: 1
406 in base-8: 6,2,6, having DV = 4, UV = 4, so that 406 is in the sequence.
-
g[n_, b_] := Map[Total, GatherBy[Differences[IntegerDigits[n, b]], Sign]];
x[n_, b_] := Select[g[n, b], # < 0 &]; y[n_, b_] := Select[g[n, b], # > 0 &];
b = 8; z = 2000; p = Table[x[n, b], {n, 1, z}]; q = Table[y[n, b], {n, 1, z}];
w = Sign[Flatten[p /. {} -> {0}] + Flatten[q /. {} -> {0}]];
Take[Flatten[Position[w, -1]], 120] (* A297264 *)
Take[Flatten[Position[w, 0]], 120] (* A297265 *)
Take[Flatten[Position[w, 1]], 120] (* A297266 *)
A256088
Non-palindromic balanced numbers in base 8.
Original entry on oeis.org
536, 608, 680, 706, 752, 778, 824, 850, 899, 922, 971, 994, 1049, 1072, 1121, 1144, 1193, 1219, 1265, 1291, 1337, 1363, 1412, 1435, 1484, 1507, 1562, 1585, 1634, 1657, 1706, 1732, 1778, 1804, 1850, 1876, 1925, 1948, 1997
Offset: 1
-
filter:= proc(n) local L, m,i;
L:= convert(n, base, 8);
m:= (1+nops(L))/2;
add(L[i]*(i-m), i=1..nops(L))=0 and L <> ListTools:-Reverse(L)
end proc:
select(filter, [$1..10000]); # Robert Israel, Nov 04 2024
-
is(n,b=8,d=digits(n,b),o=(#d+1)/2)=!(vector(#d,i,i-o)*d~)&&d!=Vecrev(d)
A333423
Numbers that are palindromes in primorial base.
Original entry on oeis.org
0, 1, 3, 7, 9, 11, 31, 39, 47, 211, 217, 223, 229, 235, 243, 249, 255, 261, 267, 275, 281, 287, 293, 299, 2311, 2347, 2383, 2419, 2455, 2523, 2559, 2595, 2631, 2667, 2735, 2771, 2807, 2843, 2879, 30031, 30061, 30091, 30121, 30151, 30181, 30211, 30247, 30277, 30307
Offset: 1
3 is a term since its representation in primorial base is 11 (1 * 2# + 1) which is a palindrome.
7 is a term since its representation in primorial base is 101 (1 * 3# + 0 * 2# + 1 = 6 + 1) which is a palindrome.
-
max = 6; bases = Prime @ Range[max, 1, -1]; nmax = Times @@ bases - 1; Select[Range[0, nmax], PalindromeQ @ IntegerDigits[#, MixedRadix[bases]] &]
A319584
Numbers that are palindromic in bases 2, 4, and 8.
Original entry on oeis.org
0, 1, 3, 5, 63, 65, 195, 325, 341, 4095, 4097, 4161, 12291, 12483, 20485, 20805, 21525, 21845, 258111, 262143, 262145, 266305, 786435, 798915, 1310725, 1311749, 1331525, 1332549, 1376277, 1377301, 1397077, 1398101, 16515135, 16777215, 16777217, 16781313
Offset: 1
89478485 = 101010101010101010101010101_2 = 11111111111111_4 = 525252525_8.
-
[n: n in [0..2*10^7] | Intseq(n, 2) eq Reverse(Intseq(n, 2)) and Intseq(n, 4) eq Reverse(Intseq(n, 4)) and Intseq(n, 8) eq Reverse(Intseq(n, 8))]; // Vincenzo Librandi, Sep 24 2018
-
palQ[n_, b_] := PalindromeQ[IntegerDigits[n, b]];
Reap[Do[If[palQ[n, 2] && palQ[n, 4] && palQ[n, 8], Print[n]; Sow[n]], {n, 0, 10^6}]][[2, 1]] (* Jean-François Alcover, Sep 25 2018 *)
Select[Range[0,168*10^5],AllTrue[Table[IntegerDigits[#,d],{d,{2,4,8}}],PalindromeQ]&] (* Harvey P. Dale, Jan 27 2024 *)
-
ispal(n, b) = my(d=digits(n, b)); Vecrev(d) == d;
isok(n) = ispal(n, 2) && ispal(n, 4) && ispal(n, 8); \\ Michel Marcus, Jun 11 2019
-
def nextpal(n, base): # m is the first palindrome successor of n in base base
m, pl = n+1, 0
while m > 0:
m, pl = m//base, pl+1
if n+1 == base**pl:
pl = pl+1
n = n//(base**(pl//2))+1
m, n = n, n//(base**(pl%2))
while n > 0:
m, n = m*base+n%base, n//base
return m
def rev(n, b):
m = 0
while n > 0:
n, m = n//b, m*b+n%b
return m
n, a = 1, 0
while n <= 100:
if a == rev(a, 4) == rev(a, 2):
print(a)
n += 1
a = nextpal(a, 8) # A.H.M. Smeets, Jun 08 2019
-
[n for n in (0..1000) if Word(n.digits(2)).is_palindrome() and Word(n.digits(4)).is_palindrome() and Word(n.digits(8)).is_palindrome()]
A319598
Numbers in base 10 that are palindromic in bases 2, 4, 8, and 16.
Original entry on oeis.org
0, 1, 3, 5, 4095, 4097, 12291, 20485, 21845, 16777215, 16777217, 16781313, 50331651, 50343939, 83886085, 83906565, 89458005, 89478485, 68702703615, 68719476735, 68719476737, 68736258049, 206158430211, 206208774147, 343597383685, 343602954245, 343681290245
Offset: 1
4095 = 111111111111_2 = 333333_4 = 7777_8 = FFF_16. Hence 4095 is in the sequence.
-
palQ[n_, b_] := PalindromeQ[IntegerDigits[n, b]];
Reap[Do[If[palQ[n, 2] && palQ[n, 4] && palQ[n, 8] && palQ[n, 16], Print[n]; Sow[n]], {n, 0, 10^6}]][[2, 1]] (* Jean-François Alcover, Sep 25 2018 *)
-
[n for n in (0..100000) if Word(n.digits(2)).is_palindrome() and Word(n.digits(4)).is_palindrome() and Word(n.digits(8)).is_palindrome() and Word(n.digits(16)).is_palindrome()]
A046240
Cubes which are palindromes in base 8.
Original entry on oeis.org
0, 1, 27, 729, 274625, 389017, 135005697, 68769820673, 72043225281, 35187593412609, 18014604668698625, 18120364883707393, 9223385231000600577, 4722367327294625677313, 4725826936714463031297
Offset: 1
A260184
Numbers n written in base 10 that are palindromic in exactly three bases b, 2 <= b <= 10 and not simultaneously bases 2, 4 and 8.
Original entry on oeis.org
9, 10, 21, 40, 55, 80, 85, 100, 130, 154, 164, 178, 191, 203, 235, 242, 255, 257, 273, 282, 292, 300, 328, 400, 455, 585, 656, 819, 910, 2709, 6643, 8200, 14762, 32152, 53235, 74647, 428585, 532900, 1181729, 1405397, 4210945, 5259525, 27711772, 719848917, 43253138565
Offset: 1
273 is in the sequence because 100010001_2 = 101010_3 = 10101_4 = 2043_5 = 1133_6 = 540_7 = 421_8 = 333_9 = 273_10 and three of the bases, namely 2, 4 & 9, yield palindromes.
-
(* see A214425 and set all terms as lst, then *)
gQ[n_] := Count[ palQ[n,#] & /@ {2, 4, 8}, True];
Select[ lst, gQ[#] != 3 &]
A043026
Base-8 palindromes that start with 6.
Original entry on oeis.org
6, 54, 390, 398, 406, 414, 422, 430, 438, 446, 3078, 3150, 3222, 3294, 3366, 3438, 3510, 3582, 24582, 24646, 24710, 24774, 24838, 24902, 24966, 25030, 25102, 25166, 25230, 25294, 25358, 25422, 25486, 25550, 25622, 25686
Offset: 1
Comments