cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A259390 Palindromic numbers in bases 7 and 9 written in base 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 40, 50, 100, 164, 200, 264, 300, 328, 400, 2000, 3550, 8200, 10252, 14510, 14762, 22800, 45600, 164900, 201720, 400200, 532900, 555013, 738100, 2756120, 2913368, 3344352, 3501600, 4084000, 12990350, 22674550, 194062432, 1684866370, 2225211080, 13575144288, 15127811455, 20404027400, 20537111057, 22668403353, 30862471355, 83714515310, 84668107250, 796259955485, 1202029647736, 2088800185930, 20268849562000
Offset: 1

Views

Author

Eric A. Schmidt and Robert G. Wilson v, Jul 17 2015

Keywords

Examples

			264 is in the sequence because 264_10 = 323_9 = 525_7.
		

Crossrefs

Programs

  • Mathematica
    (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 9]; If[palQ[pp, 7], AppendTo[lst, pp]; Print[pp]]; k++]; lst

Formula

Intersection of A029954 and A029955.

A259387 Palindromic numbers in bases 4 and 9 written in base 10.

Original entry on oeis.org

0, 1, 2, 3, 5, 10, 255, 273, 373, 546, 2550, 2730, 2910, 16319, 23205, 54215, 1181729, 1898445, 2576758, 3027758, 3080174, 4210945, 9971750, 163490790, 2299011170, 6852736153, 6899910553, 160142137430, 174913133450, 204283593150, 902465909895, 1014966912315, 2292918574418, 9295288254930, 11356994802010, 11372760382810, 38244097345762
Offset: 1

Views

Author

Eric A. Schmidt and Robert G. Wilson v, Jul 16 2015

Keywords

Examples

			273 is in the sequence because 273_10 = 333_9 = 10101_4.
		

Crossrefs

Programs

  • Mathematica
    (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 9]; If[palQ[pp, 4], AppendTo[lst, pp]; Print[pp]]; k++]; lst
    b1=4; b2=9; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)

Formula

Intersection of A014192 and A029955.

A259388 Palindromic numbers in bases 5 and 9 written in base 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 109, 246, 282, 564, 701, 22386, 32152, 41667, 47653, 48553, 1142597, 1313858, 1412768, 1677684, 12607012902, 19671459008, 20134447808, 24208576998, 24863844904, 26358878059
Offset: 1

Views

Author

Robert G. Wilson v, Jul 16 2015

Keywords

Examples

			246 is in the sequence because 246_10 = 303_9 = 1441_5.
		

Crossrefs

Programs

  • Mathematica
    (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 9]; If[palQ[pp, 5], AppendTo[lst, pp]; Print[pp]]; k++]; lst
    b1=5; b2=9; lst={};Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)

Formula

Intersection of A029952 and A029955.

A259389 Palindromic numbers in bases 6 and 9 written in base 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 80, 154, 191, 209, 910, 3740, 5740, 8281, 16562, 16814, 2295481, 2300665, 2350165, 2439445, 2488945, 2494129, 2515513, 7971580, 48307924, 61281793, 69432517, 123427622, 124091822, 124443290, 55854298990, 184314116750, 185794441250, 187195815770, 327925630018, 7264479038060, 27832011695551
Offset: 1

Views

Author

Eric A. Schmidt and Robert G. Wilson v, Jul 17 2015

Keywords

Examples

			209 is in the sequence because 209_10 = 252_9 = 545_6.
		

Crossrefs

Programs

  • Mathematica
    (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 9]; If[palQ[pp, 6], AppendTo[lst, pp]; Print[pp]]; k++]; lst
    b1=6; b2=9; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 1000000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)

Formula

Intersection of A029953 and A029955.

A256089 Non-palindromic balanced numbers in base 9.

Original entry on oeis.org

756, 846, 936, 974, 1026, 1064, 1116, 1154, 1206, 1218, 1244, 1308, 1334, 1398, 1424, 1486, 1512, 1576, 1602, 1666, 1692, 1704, 1756, 1794, 1846, 1884, 1936, 1948, 1974, 2038, 2064, 2128, 2154, 2216, 2242, 2306, 2332, 2396, 2422, 2434, 2486, 2524, 2576, 2614, 2666, 2678, 2704, 2768, 2794, 2858, 2884, 2946, 2972
Offset: 1

Views

Author

M. F. Hasler, Mar 14 2015

Keywords

Comments

Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero. Since palindromes (A029955) are trivially balanced, they are excluded here.
This is the base-9 variant of the decimal version A256075 invented by Eric Angelini. See there, and the base-2 version A256082, for further information and examples.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L, m,i;
      L:= convert(n, base, 9);
      m:= (1+nops(L))/2;
    add(L[i]*(i-m), i=1..nops(L))=0  and L <> ListTools:-Reverse(L)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Nov 04 2024
  • PARI
    is(n,b=9,d=digits(n,b),o=(#d+1)/2)=!(vector(#d,i,i-o)*d~)&&d!=Vecrev(d)

A118600 Palindromes in base 9 (written in base 9).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 22, 33, 44, 55, 66, 77, 88, 101, 111, 121, 131, 141, 151, 161, 171, 181, 202, 212, 222, 232, 242, 252, 262, 272, 282, 303, 313, 323, 333, 343, 353, 363, 373, 383, 404, 414, 424, 434, 444, 454, 464, 474, 484, 505, 515, 525, 535, 545
Offset: 1

Views

Author

Martin Renner, May 08 2006

Keywords

Crossrefs

Programs

  • Mathematica
    (* get NextPalindrome from A029965 *) Select[NestList[NextPalindrome, 0, 62], Max@IntegerDigits@# < 9 &] (* Robert G. Wilson v, May 09 2006 *)
  • Python
    from gmpy2 import digits
    def palgenbase(l,b): # generator of palindromes in base b <=10 of length <= 2*l, written in base b
        if l > 0:
            yield 0
            for x in range(1,l+1):
                for y in range(b**(x-1),b**x):
                    s = digits(y,b)
                    yield int(s+s[-2::-1])
                for y in range(b**(x-1),b**x):
                    s = digits(y,b)
                    yield int(s+s[::-1])
    A118600_list = list(palgenbase(3,9)) # Chai Wah Wu, Dec 01 2014
    
  • Python
    from sympy import integer_log
    from gmpy2 import digits
    def A118600(n):
        if n == 1: return 0
        y = 9*(x:=9**integer_log(n>>1,9)[0])
        return int((s:=digits(n-x,9))+s[-2::-1] if nChai Wah Wu, Jun 14 2024

Extensions

More terms from Robert G. Wilson v, May 09 2006

A029958 Numbers that are palindromic in base 13.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, 170, 183, 196, 209, 222, 235, 248, 261, 274, 287, 300, 313, 326, 340, 353, 366, 379, 392, 405, 418, 431, 444, 457, 470, 483, 496, 510, 523, 536, 549, 562
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 04 2020

Crossrefs

Palindromes in bases 2 through 12: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113, A029956, A029957.

Programs

  • Mathematica
    f[n_,b_]:=Module[{i=IntegerDigits[n,b]},i==Reverse[i]];lst={};Do[If[f[n,13],AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
    Select[Range[0,600],IntegerDigits[#,13]==Reverse[IntegerDigits[#,13]]&] (* Harvey P. Dale, Nov 16 2022 *)
  • PARI
    isok(n) = my(d=digits(n, 13)); d == Vecrev(d); \\ Michel Marcus, May 13 2017
    
  • Python
    from sympy import integer_log
    from gmpy2 import digits
    def A029958(n):
        if n == 1: return 0
        y = 13*(x:=13**integer_log(n>>1,13)[0])
        return int((c:=n-x)*x+int(digits(c,13)[-2::-1]or'0',13) if nChai Wah Wu, Jun 14 2024

Formula

Sum_{n>=2} 1/a(n) = 3.55686013... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A214425 Numbers n palindromic in exactly three bases b, 2 <= b <= 10.

Original entry on oeis.org

9, 10, 21, 40, 55, 63, 65, 80, 85, 100, 130, 154, 164, 178, 191, 195, 203, 235, 242, 255, 257, 273, 282, 292, 300, 325, 328, 341, 400, 455, 585, 656, 819, 910, 2709, 4095, 4097, 4161, 6643, 8200, 12291, 12483, 14762, 20485, 20805, 21525, 21845, 32152, 53235
Offset: 1

Views

Author

T. D. Noe, Jul 18 2012

Keywords

Comments

In the first 1234 terms, only 28 of the possible 84 triples of bases occur. Does every triple occur eventually? - T. D. Noe, Aug 17 2012
See A238893 for the three bases. By far, the most common bases are (2,4,8). - T. D. Noe, Mar 07 2014 (exception are in A260184. - Giovanni Resta and Robert G. Wilson v, Jul 17 2015).

Examples

			10 is palindromic in bases 3, 4, and 9.
273 is in the sequence because 100010001_2 = 101010_3 = 10101_4 = 2043_5 = 1133_6 = 540_7 = 421_8 = 333_9 = 273_10 and three of the bases, namely 2, 4 & 9, yield palindromes. - _Giovanni Resta_ and _Robert G. Wilson v_, Jul 17 2015
		

Crossrefs

Cf. A050813, A214423, A214424, A214426 (palindromic in 0-2 and 4 bases).

Programs

  • Mathematica
    n = -1; t = {}; While[Length[t] < 100, n++; If[Count[Table[s = IntegerDigits[n, m]; s == Reverse[s], {m, 2, 10}], True] == 3, AppendTo[t, n]]]; t

Formula

A050812(n) = 3.
The intersection of A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955 & A002113 which yields just three members. - Giovanni Resta and Robert G. Wilson v, Jul 17 2015

A029959 Numbers that are palindromic in base 14.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 197, 211, 225, 239, 253, 267, 281, 295, 309, 323, 337, 351, 365, 379, 394, 408, 422, 436, 450, 464, 478, 492, 506, 520, 534, 548, 562, 576, 591
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 04 2020

Examples

			195 is DD in base 14.
196 is 100 in base 14, so it's not in the sequence.
197 is 101 in base 14.
		

Crossrefs

Palindromes in bases 2 through 13: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113, A029956, A029957, A029958.

Programs

  • Mathematica
    palQ[n_, b_:10] := Module[{idn = IntegerDigits[n, b]}, idn == Reverse[idn]]; Select[ Range[0, 600], palQ[#, 14] &] (* Harvey P. Dale, Aug 03 2014 *)
  • PARI
    isok(n) = Pol(d=digits(n, 14)) == Polrev(d); \\ Michel Marcus, Mar 12 2017
    
  • Python
    from sympy import integer_log
    from gmpy2 import digits
    def A029959(n):
        if n == 1: return 0
        y = 14*(x:=14**integer_log(n>>1,14)[0])
        return int((c:=n-x)*x+int(digits(c,14)[-2::-1]or'0',14) if nChai Wah Wu, Jun 14 2024

Formula

Sum_{n>=2} 1/a(n) = 3.6112482... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A029960 Numbers that are palindromic in base 15.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 226, 241, 256, 271, 286, 301, 316, 331, 346, 361, 376, 391, 406, 421, 436, 452, 467, 482, 497, 512, 527, 542, 557, 572, 587, 602, 617
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 04 2020

Crossrefs

Programs

  • Mathematica
    f[n_,b_]:=Module[{i=IntegerDigits[n,b]},i==Reverse[i]];lst={};Do[If[f[n,15],AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
    Select[Range@ 620, PalindromeQ@ IntegerDigits[#, 15] &] (* Michael De Vlieger, May 13 2017, Version 10.3 *)
  • PARI
    isok(n) = my(d=digits(n, 15)); d == Vecrev(d); \\ Michel Marcus, May 14 2017
    
  • Python
    from sympy import integer_log
    from gmpy2 import digits
    def A029960(n):
        if n == 1: return 0
        y = 15*(x:=15**integer_log(n>>1,15)[0])
        return int((c:=n-x)*x+int(digits(c,15)[-2::-1]or'0',15) if nChai Wah Wu, Jun 14 2024

Formula

Sum_{n>=2} 1/a(n) = 3.66254285... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020
Previous Showing 11-20 of 32 results. Next