cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A107076 Odd-digit semiprimes, divisors of which are odd-digit primes.

Original entry on oeis.org

9, 15, 33, 35, 39, 51, 55, 57, 77, 91, 93, 95, 111, 119, 133, 155, 159, 177, 339, 355, 371, 393, 395, 511, 519, 537, 553, 573, 579, 591, 597, 755, 791, 917, 933, 939, 951, 955, 959, 973, 993, 995, 1119, 1137, 1191, 1337, 1351, 1379, 1393, 1555
Offset: 1

Views

Author

Zak Seidov, May 10 2005

Keywords

Comments

Differs from A091296 in that A107076 doesn't contain terms 115=5*23,319=11*29,335=5*67,377=13*29, etc.

Crossrefs

A108418 Primes with at least one of each odd digit and no even digits.

Original entry on oeis.org

13597, 13759, 15739, 15937, 15973, 17359, 17539, 19753, 31957, 37159, 37591, 37951, 39157, 51973, 53197, 53719, 53791, 53917, 57139, 57193, 71359, 71593, 73951, 75193, 75391, 75913, 75931, 79153, 79531, 91573, 91753, 95317, 95713, 95731
Offset: 1

Views

Author

Rick L. Shepherd, Jun 02 2005

Keywords

Comments

This is a subsequence of A030096.
No even digits are allowable. Otherwise the first missing terms would be 105379, 105397, 109357, 109537. - Zak Seidov, Nov 24 2013

Crossrefs

Cf. A030096 (Primes whose digits are all odd), A050288 (Pandigital primes), A108386 (Primes p such that p's set of distinct digits is {1, 3, 7, 9}).
Cf. A232447 (even digits are allowable). - Zak Seidov, Nov 24 2013

Programs

  • Mathematica
    Select[Table[Prime[n],{n,10000}],!ContainsAny[IntegerDigits[#],{0,2,4,6,8}]&&ContainsAll[IntegerDigits[#],{1,3,5,7,9}]&] (* James C. McMahon, Mar 05 2024 *)
  • Python
    from sympy import isprime
    from itertools import count, islice, product
    def agen():
        for d in count(5):
            for p in product("13579", repeat=d):
                if set(p) != set("13579"): continue
                t = int("".join(p))
                if isprime(t): yield t
    print(list(islice(agen(), 40))) # Michael S. Branicky, Jul 08 2022

Extensions

Added missing last term with 5 different digits, Carmine Suriano, Jan 14 2011

A306084 Primes which remain prime after all even digits are removed.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 263, 271, 283, 307, 311, 313, 317, 331, 337, 347, 353, 359, 367, 373, 379, 397, 419, 431, 443, 463, 467, 479, 487, 503, 509, 523
Offset: 1

Views

Author

Zak Seidov and Robert G. Wilson v, Jun 20 2018

Keywords

Comments

Obviously all primes with just odd digits are members of this sequence.

Examples

			23 is a member because if the digit 2 is removed the resulting number becomes 3 which is a prime.
		

Crossrefs

Cf. A030096 (subsequence), A306085, A306086.

Programs

  • Mathematica
    Select[Prime@ Range@ 100, PrimeQ[ FromDigits[ Select[ IntegerDigits@#, OddQ]]] &]
  • PARI
    isok(p) = isprime(p) && isprime(fromdigits(select(x->(x % 2), digits(p)))); \\ Michel Marcus, Jun 21 2018

A309249 Primes p such that p * (product of digits of p) - 2 is prime.

Original entry on oeis.org

2, 3, 5, 7, 13, 73, 113, 173, 193, 197, 359, 373, 937, 1117, 1153, 1531, 1571, 1597, 1777, 1951, 1979, 3119, 3313, 3517, 3539, 3557, 3571, 5119, 5399, 5591, 5779, 7159, 7177, 7351, 7393, 7573, 7757, 7793, 7933, 7951, 9133, 9511, 9533, 9931, 9973, 11119, 11131
Offset: 1

Views

Author

Hauke Löffler, Jul 18 2019

Keywords

Comments

Except for 2, a subset of A030096. - Robert Israel, Jul 18 2019
Primes with zero as a digit are excluded. - Harvey P. Dale, Jan 02 2020

Examples

			2 is in the sequence because 2*(2) - 2 = 2 (prime);
359 is in the sequence because 359*(3*5*9) - 2 = 48463 (prime).
		

Crossrefs

Programs

  • Mathematica
    ppd2Q[n_]:=Module[{c=n Times@@IntegerDigits[n]-2},c>0&&PrimeQ[c]]; Select[ Prime[Range[1500]],ppd2Q] (* Harvey P. Dale, Jan 02 2020 *)
  • SageMath
    P = Primes(); [ P.unrank(p) for p in range(1000) if is_prime( P.unrank(p) * prod([int(i) for i in str(P.unrank(p)) ] ) - 2 )]

A322517 Primes of form 1357913579... .

Original entry on oeis.org

13, 1357913579135791357913, 1357913579135791357913579135791357913579135791357913579135791357913579135791357913
Offset: 1

Views

Author

Seiichi Manyama, Dec 20 2018

Keywords

Comments

The next term is too large to include.

Crossrefs

Subsequence of A030096.

A322606 Primes of form 9753197531... .

Original entry on oeis.org

97, 9753197, 97531975319, 97531975319753197, 975319753197531975319
Offset: 1

Views

Author

Seiichi Manyama, Dec 20 2018

Keywords

Comments

The next term is too large to include.
The next term has 127 digits and there are no additional terms up to 2000 digits. - Harvey P. Dale, Jul 13 2021

Crossrefs

Subsequence of A030096.
Cf. A322517.

Programs

  • Mathematica
    Select[Table[FromDigits[PadRight[{},n,{9,7,5,3,1}]],{n,30}],PrimeQ] (* Harvey P. Dale, Jul 13 2021 *)
  • PARI
    for(n=2,1e3, if(isprime(t=10^n*97531\99999), print1(t", "))) \\ Charles R Greathouse IV, Dec 09 2024

A358685 Number of primes < 10^n whose digits are all odd.

Original entry on oeis.org

3, 15, 57, 182, 790, 3217, 13298, 56866, 254689, 1128121, 5106701, 23266331, 107019385, 494689488, 2306491761, 10758057302, 50548874979
Offset: 1

Views

Author

Zhining Yang, Nov 26 2022

Keywords

Examples

			a(2) = 15 as there are 15 primes less than 100 whose digits are all odd: 3, 5, 7, 11, 13, 17, 19, 31, 37, 53, 59, 71, 73, 79, 97.
		

Crossrefs

Programs

  • Mathematica
    n=7
    Length[Select[Prime[Range[PrimePi[10^n]]], And @@ OddQ[IntegerDigits[#]] &]] (* Zhining Yang, Nov 26 2022 *)
    n = PrimePi[10^8];
    Sum[If[MemberQ[IntegerDigits[Prime[i]], _?EvenQ], 0, 1], {i, 1, n}]
    (* Jianlin Su, Nov 27 2022 *)
  • Python
    from sympy import primerange
    def a(n):
        p=list(primerange(3,10**n))
        return(sum(1 for k in p if all(int(d) %2 for d in str(k))==True))
    print ([a(n) for n in range(1,8)])
    
  • Python
    from sympy import isprime
    from itertools import count, islice, product
    def agen(): # generator of terms
        c = 3
        for d in count(2):
            yield c
            for p in product("13579", repeat=d-1):
                s = "".join(p)
                for last in "1379":
                    if isprime(int(s+last)): c += 1
    print(list(islice(agen(), 9))) # Michael S. Branicky, Nov 27 2022

Extensions

a(10)-a(14) from Michael S. Branicky, Nov 26 2022
a(15) from Zhining Yang, Dec 21 2022
a(16)-a(17) from Martin Ehrenstein, Dec 21 2022

A358690 Number of n-digit primes whose digits are all odd.

Original entry on oeis.org

3, 12, 42, 125, 608, 2427, 10081, 43568, 197823, 873432, 3978580, 18159630, 83753054, 387670103, 1811802273, 8451565541, 39790817677
Offset: 1

Views

Author

Zhining Yang, Nov 26 2022

Keywords

Examples

			a(2) = 12 as there are 12 2-digit primes whose digits are all odd: 11, 13, 17, 19, 31, 37, 53, 59, 71, 73, 79, 97.
		

Crossrefs

Programs

  • Mathematica
    Length[Select[Prime[Range[PrimePi[10^(n - 1)], PrimePi[10^n]]], And @@ OddQ[IntegerDigits[#]] &]]
  • Python
    from sympy import primerange
    def a(n):
        num=0
        for f in range(1,10,2):
            p=list(primerange(f*10**(n-1),(f+1)*10**(n-1)))
            num+=sum(1 for k in p if all(int(d) %2 for d in str(k)))
        return(num)
    print ([a(n) for n in range(1,8)])
    
  • Python
    from sympy import isprime
    from itertools import count, islice, product
    def a(n):
        c = 0 if n > 1 else 1
        for p in product("13579", repeat=n-1):
            s = "".join(p)
            for last in "1379":
                if isprime(int(s+last)): c += 1
        return c
    print([a(n) for n in range(1, 10)]) # Michael S. Branicky, Nov 27 2022

Formula

a(n) = A358685(n) - A358685(n-1).

Extensions

a(10)-a(14) from Michael S. Branicky, Nov 26 2022
a(15) from Zhining Yang, Dec 21 2022
a(16)-a(17) from Martin Ehrenstein, Dec 24 2022

A338018 Primes not in A228629.

Original entry on oeis.org

3, 5, 11, 13, 17, 19, 29, 31, 37, 41, 43, 47, 53, 59, 71, 73, 79, 89, 97, 101, 103, 113, 131, 137, 139, 149, 151, 157, 173, 179, 191, 193, 197, 199, 229, 233, 257, 281, 311, 313, 317, 331, 337, 347, 349, 353, 359, 373, 379, 397, 419, 431, 433, 439, 443, 449, 457, 479, 491, 499, 503, 541, 547, 557
Offset: 1

Views

Author

Robert Israel, Oct 06 2020

Keywords

Comments

Primes p such that there is no prime whose decimal digits are (in some order) the 9's complements of the decimal digits of p.
Leading zeros are not allowed.

Examples

			a(4)=13 is a member because the 9's complements of the digits 1,3 are 8,2, and none of the integers 28 or 82 is prime.
a(26)=149 is a member because the 9's complements of its digits are 8,5,0, and none of the integers with those digits is prime.
		

Crossrefs

Cf. A228629. Contains all members of A030096 except 7.

Programs

  • Maple
    R:= 3,5:
    for d from 2 to 4 do
      P:= select(isprime,[seq(i,i=10^(d-1)+1..10^d-1,2)]);
      nP:= nops(P);
      Pd:= map(sort@convert,P,base,10);
      Ps:= convert(map(t -> ListTools:-Reverse([9$d]-t), Pd),set);
      S:= remove(t -> member(Pd[t],Ps),[$1..nP]);
      R:= R, op(P[S]);
    od:
    R; # Robert Israel, Oct 06 2020

A084369 Numbers n such that the n-th prime number doesn't contain any even digits.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 11, 12, 16, 17, 20, 21, 22, 25, 30, 32, 33, 34, 36, 37, 40, 41, 43, 44, 45, 46, 64, 65, 66, 67, 68, 71, 72, 74, 75, 78, 102, 105, 106, 108, 109, 128, 130, 131, 133, 134, 137, 139, 156, 157, 159, 162, 164, 165, 167, 168, 187, 190, 191, 193, 196
Offset: 1

Views

Author

Zak Seidov, Jun 23 2003

Keywords

Examples

			The 22nd prime is 79, the digits 7 and 9 are odd. Thus 22 is in the sequence.
The 9th prime is 23, the digit 2 is even, therefore 9 is not in the sequence.
		

Crossrefs

Cf. A030096 [contains the corresponding primes].

Programs

  • Mathematica
    a={};For[n=1,n<200,n++,If[Length[Select[IntegerDigits[Prime[n]],EvenQ[ # ]&]] == 0, AppendTo[a, n]]]; a

Extensions

Edited by Stefan Steinerberger, Jun 11 2007
Previous Showing 31-40 of 45 results. Next