cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 52 results. Next

A227457 E.g.f. equals the series reversion of x - x*log(1+x).

Original entry on oeis.org

1, 2, 9, 68, 720, 9804, 163184, 3210192, 72870120, 1874721360, 53905894152, 1713195438624, 59633476003920, 2256257009704320, 92196226214092800, 4046446853549201664, 189845257963376620800, 9481546020840245199360, 502242773970728703225600, 28124368575613839072714240
Offset: 1

Views

Author

Paul D. Hanna, Jul 12 2013

Keywords

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 9*x^3/3! + 68*x^4/4! + 720*x^5/5! +...
where A(x) = x/(1 - log(1+A(x))).
The e.g.f. satisfies:
(3) A(x) = x + x*log(1+x) + d/dx x^2*log(1+x)^2/2! + d^2/dx^2 x^3*log(1+x)^3/3! + d^3/dx^3 x^4*log(1+x)^4/4! +...
(4) log(A(x)/x) = log(1+x) + d/dx x*log(1+x)^2/2! + d^2/dx^2 x^2*log(1+x)^3/3! + d^3/dx^3 x^3*log(1+x)^4/4! +...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x - x*Log[1+x],{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 10 2014 *)
  • PARI
    {a(n)=n!*polcoeff(serreverse(x-x*log(1+x +x*O(x^n))), n)}
    for(n=1,25,print1(a(n),", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, x^m*log(1+x+x*O(x^n))^m/m!)); n!*polcoeff(A, n)}
    for(n=1,25,print1(a(n),", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, x^(m-1)*log(1+x+x*O(x^n))^m/m!)+x*O(x^n))); n!*polcoeff(A, n)}
    for(n=1,25,print1(a(n),", "))
    
  • PARI
    {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
    {a(n)=sum(k=0,n-1,k!*Stirling1(n-1,k)*binomial(n+k-1,n-1))}
    for(n=1,25,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n-1} k! * Stirling1(n-1,k) * binomial(n+k-1,n-1). [From a formula in A052819 due to Vladimir Kruchinin]
E.g.f. A(x) satisfies:
(1) A(x - x*log(1+x)) = x.
(2) A(x) = x/(1 - log(1+A(x))).
(3) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n * log(1+x)^n / n!.
(4) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1) * log(1+x)^n / n! ).
a(n) ~ n^(n-1) * (1-c) / (c*sqrt(1+c) * exp(n) * (c-2+1/c)^n), where c = LambertW(1) = 0.5671432904... (see A030178). - Vaclav Kotesovec, Jan 10 2014

A258114 E.g.f.: Sum_{n>=0} x^n * cosh(n*x).

Original entry on oeis.org

1, 1, 2, 9, 72, 665, 6960, 85057, 1199744, 19070865, 336372480, 6522635801, 137996694528, 3163206890857, 78085740701696, 2065239729737745, 58263449436979200, 1746433243580269217, 55428341343200280576, 1856918215298125692073, 65483209810866254643200, 2424691204935999655757241
Offset: 0

Views

Author

Paul D. Hanna, May 20 2015

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 72*x^4/4! + 665*x^5/5! +...
where A(x) = 1 + x*cosh(x) + x^2*cosh(2*x) + x^3*cosh(3*x) + x^4*cosh(4*x) +...
		

Crossrefs

Cf. A030178.

Programs

  • Mathematica
    CoefficientList[Series[(1-x*Cosh[x])/(1-2*x*Cosh[x]+x^2), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, May 21 2015 *)
  • PARI
    {a(n) = sum(k=0,n, n!/k! * ((n-k)^k + (-n+k)^k)/2)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = local(A=1); A = sum(m=0,n, x^m*cosh(m*x +x*O(x^n))); n!*polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = local(X=x+x*O(x^n),A=1); A = (1 - x*cosh(X)) / (1 - 2*x*cosh(X) + x^2); n!*polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

E.g.f.: (1 - x*cosh(x)) / (1 - 2*x*cosh(x) + x^2).
a(n) = Sum_{k=0..n} n!/k! * ((n-k)^k + (-n+k)^k)/2.
a(n) ~ n! * (1-c*cosh(c)) / (2*(cosh(c)+c*(sinh(c)-1)) * c^(n+1)), where c = A030178 = LambertW(1) = 0.56714329040978387299996866... . - Vaclav Kotesovec, May 21 2015

A333761 Decimal expansion of root of the equation LambertW(r) = 1 - r.

Original entry on oeis.org

5, 9, 8, 9, 4, 1, 8, 6, 2, 4, 5, 8, 4, 5, 2, 9, 6, 4, 3, 4, 9, 3, 7, 4, 6, 2, 4, 9, 9, 3, 5, 4, 3, 3, 7, 0, 9, 0, 4, 3, 9, 3, 0, 1, 3, 4, 9, 5, 4, 0, 2, 2, 2, 3, 6, 3, 0, 4, 0, 3, 5, 0, 7, 9, 2, 2, 1, 3, 0, 3, 6, 0, 0, 4, 5, 4, 2, 0, 3, 0, 0, 0, 4, 6, 6, 7, 4, 1, 8, 2, 8, 7, 0, 9, 1, 3, 7, 2, 3, 2, 5, 5, 5, 6, 9, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 09 2020

Keywords

Examples

			0.59894186245845296434937462499354337090439301349540222363040350792213...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[r/.FindRoot[LambertW[r] == 1 - r, {r, 1/2}, WorkingPrecision->150], 10, 120][[1]]
  • PARI
    solve(x=0, 1, 1-x-lambertw(x)) \\ Michel Marcus, Jun 09 2020

A357549 a(n) = floor( Sum_{k=0..n-1} n^k / (k! * a(k)) ), for n > 0 with a(0) = 1.

Original entry on oeis.org

1, 1, 3, 5, 9, 17, 30, 52, 91, 161, 285, 503, 889, 1573, 2782, 4920, 8697, 15368, 27146, 47928, 84590, 149246, 263247, 464214, 818445, 1442762, 2543025, 4482001, 7898979, 13920609, 24532535, 43234510, 76195273, 134288583, 236682848, 417170144, 735325596, 1296184444
Offset: 0

Views

Author

Paul D. Hanna, Dec 01 2022

Keywords

Comments

Limit_{n->oo} a(n)/a(n+1) = w = exp(-w) = LambertW(1), the omega constant A030178.

Examples

			a(n) = floor(1 + n/a(1) + n^2/(2!*a(2)) + n^3/(3!*a(3)) + n^4/(4!*a(4)) + n^5/(5!*a(5)) + ... + n^(n-1)/((n-1)!*a(n-1)) ), for n > 0 with a(0) = 1.
To generate this sequence, start with a(0) = 1 and proceed as follows:
a(1) = 1;
a(2) = 1 + 2;
a(3) = floor(1 + 3 + 3^2/(2!*3)) = 5;
a(4) = floor(1 + 4 + 4^2/(2!*3) + 4^3/(3!*5)) = 9;
a(5) = floor(1 + 5 + 5^2/(2!*3) + 5^3/(3!*5) + 5^4/(4!*9)) = 17;
a(6) = floor(1 + 6 + 6^2/(2!*3) + 6^3/(3!*5) + 6^4/(4!*9) + 6^5/(5!*17)) = 30;
a(7) = floor(1 + 7 + 7^2/(2!*3) + 7^3/(3!*5) + 7^4/(4!*9) + 7^5/(5!*17) + 7^6/(6!*30)) = 52;
a(8) = floor(1 + 8 + 8^2/(2!*3) + 8^3/(3!*5) + 8^4/(4!*9) + 8^5/(5!*17) + 8^6/(6!*30) + 8^7/(7!*52)) = 91;
...
The terms of this sequence are computed from partial sums; the actual infinite sums: Sum_{k>=0} n^k / (k!*a(k)), for n >= 1, begin:
n = 1: 2.205170228313619257204573175905229637440183827382...
n = 2: 4.026624683096007253196633437972996492234406960420...
n = 3: 6.938404847258827610039050722524656436473915836809...
n = 4: 11.76290965545838695557108226269004580813840600527...
n = 5: 19.93268682960501544009268973006846510258954225008...
n = 6: 33.95355685301572322838214122801051011301028947272...
n = 7: 58.22316762392820953863455561301453509123241732275...
n = 8: 100.4764040611128933206396099594217599817997316217...
n = 9: 174.3356399991557294349025383486302219269780824259...
n = 10: 303.8074912728852469034815183896362125031997652232...
...
		

Crossrefs

Cf. A030178.

Programs

  • PARI
    /* Print a(n) for n = 0 through N */
    N = 40; A=vector(N+1);
    { a(n) = if(n<0,0, A[n+1] = if(n<1,1, floor( sum(k=0,n-1, n^k/k!/A[k+1]) ) )) }
    for(n=0,N,print1(a(n),", "))

A387101 Decimal expansion of the smallest real solution to e^x = x^3.

Original entry on oeis.org

1, 8, 5, 7, 1, 8, 3, 8, 6, 0, 2, 0, 7, 8, 3, 5, 3, 3, 6, 4, 5, 6, 9, 8, 0, 9, 8, 2, 0, 6, 2, 7, 6, 6, 6, 9, 9, 9, 0, 4, 4, 1, 5, 3, 3, 1, 7, 8, 8, 9, 0, 8, 0, 5, 7, 3, 7, 9, 5, 0, 8, 2, 2, 3, 4, 7, 8, 8, 1, 2, 0, 5, 6, 7, 6, 5, 2, 6, 6, 2, 0, 3, 8, 3, 3, 1, 4, 0, 7, 7, 8, 5, 6, 4, 7, 7, 6, 5, 2, 1
Offset: 1

Views

Author

Stefano Spezia, Aug 16 2025

Keywords

Comments

Equivalently, the smallest real solution to log(x) = x/3.

Examples

			1.85718386020783533645698098206276669990441533...
		

Crossrefs

Cf. A030178, A126583, A126584, A387102 (largest).

Programs

  • Mathematica
    RealDigits[-3*ProductLog[-1/3],10,100][[1]]
    RealDigits[x/.FindRoot[E^x==x^3,{x,1},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Sep 02 2025 *)
  • PARI
    -3*lambertw(-1/3) \\ Michel Marcus, Aug 18 2025

Formula

Equals -3*LambertW(-1/3).

A387102 Decimal expansion of the largest real solution to e^x = x^3.

Original entry on oeis.org

4, 5, 3, 6, 4, 0, 3, 6, 5, 4, 9, 7, 3, 5, 2, 7, 4, 2, 1, 6, 9, 0, 2, 1, 9, 0, 3, 4, 2, 1, 6, 1, 1, 6, 1, 1, 3, 8, 1, 0, 9, 5, 1, 1, 5, 5, 4, 0, 6, 0, 7, 8, 3, 6, 2, 7, 7, 7, 8, 5, 6, 4, 2, 1, 9, 9, 6, 9, 3, 1, 4, 8, 1, 5, 3, 4, 7, 2, 4, 4, 8, 1, 9, 7, 2, 7, 9, 6, 4, 6, 4, 4, 5, 8, 3, 3, 9, 5, 0, 5
Offset: 1

Views

Author

Stefano Spezia, Aug 16 2025

Keywords

Comments

Equivalently, the largest real solution to log(x) = x/3.

Examples

			4.5364036549735274216902190342161161138109511554...
		

Crossrefs

Cf. A030178, A126583, A126584, A366565, A387101 (smallest).

Programs

  • Mathematica
    RealDigits[-3*ProductLog[-1,-1/3],10,100][[1]]

Formula

Equals -3*LambertW(-1, -1/3).

A139338 Least k > 0 such that Sum_{i=0..2*n-1} (-k)^i/i! < 0.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 39, 39, 40, 40, 41, 41, 42, 43
Offset: 1

Views

Author

Benoit Cloitre, Jun 08 2008

Keywords

References

  • Serge Francinou, Herve Gianella and Serge Nicolas, Exercices de mathématiques : oraux X-ENS, Analyse 1, Cassini Editeur, 2003, pp. 119-121.

Crossrefs

Cf. A030178.

Programs

  • PARI
    a(n)=if(n<0,0,k=1;while(sum(i=0,2*n-1,(-k)^i*1./i!)>0,k++);k)

Formula

a(n) = r*n + o(n) where r is the solution to x + log(x) = 0 and 0 < x < 1: r = 0.56714329040978387299996... (see A030178).

A246823 Decimal expansion of the asymptotic cost of the minimum edge cover in a complete bipartite graph with independent exponentially distributed edge costs.

Original entry on oeis.org

1, 4, 5, 5, 9, 3, 8, 0, 9, 2, 6, 7, 6, 4, 0, 4, 1, 9, 4, 0, 1, 2, 1, 4, 8, 9, 4, 0, 9, 5, 7, 3, 2, 4, 9, 8, 2, 1, 8, 0, 2, 8, 3, 6, 0, 2, 3, 2, 3, 2, 0, 4, 8, 3, 0, 6, 5, 3, 5, 6, 0, 9, 9, 3, 1, 9, 6, 7, 7, 7, 6, 6, 5, 2, 3, 7, 6, 8, 1, 6, 5, 7, 5, 9, 8, 8, 7, 4, 2, 0, 2, 8, 8, 5, 9, 5, 7, 9, 9, 6, 5, 7, 4, 1
Offset: 1

Views

Author

Jean-François Alcover, Sep 04 2014

Keywords

Examples

			1.4559380926764041940121489409573249821802836023232...
		

Crossrefs

Cf. A030178.

Programs

  • Mathematica
    RealDigits[ProductLog[1]^2 + 2*ProductLog[1], 10, 104] // First

Formula

W(1)^2 + 2W(1), where W is the Lambert W-function (also known as ProductLog).

A265131 Decimal expansion of positive x satisfying x^(x^x) = LambertW(1).

Original entry on oeis.org

4, 4, 3, 3, 4, 4, 8, 8, 7, 3, 5, 7, 9, 1, 5, 0, 7, 4, 1, 5, 9, 8, 0, 0, 2, 7, 9, 3, 7, 8, 8, 6, 8, 8, 6, 0, 1, 2, 2, 5, 4, 1, 3, 9, 6, 5, 2, 2, 2, 2, 9, 2, 1, 4, 9, 5, 7, 7, 1, 3, 5, 9, 5, 4, 0, 8, 8, 4, 9, 4, 5, 4, 8, 8, 1, 8, 6, 0, 0, 2, 4, 6, 5, 9, 7, 8, 8, 6, 7, 6, 8, 7, 9, 2, 2, 8, 4, 9, 2, 5, 1, 9, 9, 4, 1, 5, 3, 0, 0, 1, 1, 9, 8, 1
Offset: 0

Views

Author

Anders Hellström, Dec 02 2015

Keywords

Examples

			0.44334488735791507415980027937886886012254139652223...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x/.FindRoot[x^(x^x)==ProductLog[1],{x,1},WorkingPrecision-> 120]][[1]] (* Harvey P. Dale, Jul 19 2020 *)
  • PARI
    default(realprecision,2000);solve(x=0.001,3,x^(x^x)-lambertw(1))

A266092 Decimal expansion of the power tower of 1/sqrt(3): the real solution to 3^(x/2)*x = 1.

Original entry on oeis.org

6, 8, 6, 0, 2, 6, 7, 2, 4, 5, 3, 6, 2, 5, 1, 3, 1, 9, 7, 1, 3, 0, 0, 6, 8, 4, 6, 1, 8, 2, 2, 3, 8, 1, 5, 9, 5, 0, 3, 3, 2, 4, 2, 3, 7, 7, 6, 2, 3, 4, 3, 4, 0, 2, 4, 1, 7, 6, 7, 1, 9, 1, 6, 7, 0, 0, 4, 0, 2, 9, 0, 5, 8, 1, 8, 7, 5, 4, 8, 4, 8, 7, 7, 6, 4, 2, 8, 1, 5, 7, 8, 6, 8, 9, 3, 9, 8, 2, 6, 3, 8, 0, 6, 6, 8, 6, 9, 9, 3, 5, 2, 8, 3, 3, 2, 4, 8, 9, 6, 7
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2015

Keywords

Examples

			(1/sqrt(3))^(1/sqrt(3))^(1/sqrt(3))^(1/sqrt(3))^… = 0.686026724536251319713006846182…
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2 ProductLog[Log[3]/2])/Log[3], 10, 120][[1]]
  • PARI
    t=log(3)/2; lambertw(t)/t \\ Charles R Greathouse IV, Apr 18 2016

Formula

Equals 2*LambertW(log(3)/2)/log(3).
Previous Showing 41-50 of 52 results. Next