cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A129267 Triangle with T(n,k) = T(n-1,k-1) + T(n-1,k) - T(n-2,k-1) - T(n-2,k) and T(0,0)=1 .

Original entry on oeis.org

1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -1, -3, -2, 1, 1, 0, -2, -5, -3, 1, 1, 1, 2, -2, -7, -4, 1, 1, 1, 5, 7, -1, -9, -5, 1, 1, 0, 3, 12, 15, 1, -11, -6, 1, 1, -1, -3, 3, 21, 26, 4, -13, -7, 1, 1, -1, -7, -15, -3, 31, 40, 8, -15, -8, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Jun 08 2007

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows given by [1,-1,1,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,...] where DELTA is the operator defined in A084938 . Riordan array (1/(1-x+x^2),(x*(1-x))/(1-x+x^2)); inverse array is (1/(1+x),(x/(1+x))*c(x/(1+x))) where c(x)is g.f. of A000108 .
Row sums are ( with the addition of a first row {0}): 0, 1, 2, 2, 0, -4, -8, -8, 0, 16, 32,... (see A009545). - Roger L. Bagula, Nov 15 2009

Examples

			Triangle begins:
   1;
   1,  1;
   0,  1,   1;
  -1, -1,   1,  1;
  -1, -3,  -2,  1,  1;
   0, -2,  -5, -3,  1,   1;
   1,  2,  -2, -7, -4,   1,   1;
   1,  5,   7, -1, -9,  -5,   1,   1;
   0,  3,  12, 15,  1, -11,  -6,   1,  1;
  -1, -3,   3, 21, 26,   4, -13,  -7,  1, 1;
  -1, -7, -15, -3, 31,  40,   8, -15, -8, 1, 1;
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or  k>n  then 0
        elif n=0 and k=0 then 1
        else T(n-1,k-1) + T(n-1,k) - T(n-2,k-1) - T(n-2,k)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 14 2020
  • Mathematica
    m = {{a, 1}, {-1, 1}}; v[0]:= {0, 1}; v[n_]:= v[n] = m.v[n-1]; Table[CoefficientList[v[n][[1]], a], {n, 0, 10}]//Flatten (* Roger L. Bagula, Nov 15 2009 *)
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0 && k==0, 1, T[n-1, k-1] + T[n-1, k] - T[n-2, k-1] - T[n-2, k] ]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 14 2020 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (n==0 and k==0): return 1
        else: return T(n-1,k-1) + T(n-1,k) - T(n-2,k-1) - T(n-2,k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 14 2020

Formula

Sum{k=0..n} T(n,k)*x^k = { (-1)^n*A057093(n), (-1)^n*A057092(n), (-1)^n*A057091(n), (-1)^n*A057090(n), (-1)^n*A057089(n), (-1)^n*A057088(n), (-1)^n*A057087(n), (-1)^n*A030195(n+1), (-1)^n*A002605(n), A039834(n+1), A000007(n), A010892(n), A099087(n), A057083(n), A001787(n+1), A030191(n), A030192(n), A030240(n), A057084(n), A057085(n), A057086(n) } for x=-11, -10, ..., 8, 9, respectively .
Sum{k=0..n} T(n,k)*A000045(k) = A100334(n).
Sum{k=0..floor(n/2)} T(n-k,k) = A050935(n+2).
T(n,k)= Sum{j>=0} A109466(n,j)*binomial(j,k).
T(n,k) = (-1)^(n-k)*A199324(n,k) = (-1)^k*A202551(n,k) = A202503(n,n-k). - Philippe Deléham, Mar 26 2013
G.f.: 1/(1-x*y+x^2*y-x+x^2). - R. J. Mathar, Aug 11 2015

Extensions

Riordan array definition corrected by Ralf Stephan, Jan 02 2014

A161728 a(n) = ((3+sqrt(3))*(4+sqrt(3))^n-(3-sqrt(3))*(4-sqrt(3))^n)/sqrt(12).

Original entry on oeis.org

1, 7, 43, 253, 1465, 8431, 48403, 277621, 1591729, 9124759, 52305595, 299822893, 1718610409, 9851185663, 56467549987, 323674986277, 1855321740385, 10634799101479, 60959210186827, 349421293175389, 2002900612974361, 11480728092514831, 65808116771451955, 377215468968922837
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jun 17 2009

Keywords

Comments

Fourth binomial transform of A162436, inverse binomial transform of A162272.
The inverse binomial transform yields A030192. The binomial transform yields A162272. - R. J. Mathar, Jul 07 2009

Crossrefs

Programs

  • PARI
    F=nfinit(x^2-3); for(n=0, 20, print1(nfeltdiv(F, ((3+x)*(4+x)^n-(3-x)*(4-x)^n), (2*x))[1], ",")) \\ Klaus Brockhaus, Jun 19 2009
    
  • PARI
    Vec((1-x)/(1-8*x+13*x^2)+O(x^25)) \\ M. F. Hasler, Dec 03 2014

Formula

a(n) = 8*a(n-1) - 13(n-2) for n > 1; a(0) = 1, a(1) = 7.
G.f.: (1 - x)/(1 - 8*x + 13*x^2). - Klaus Brockhaus, Jun 19 2009
E.g.f.: exp(4*x)*(cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)). - Stefano Spezia, Dec 31 2022

Extensions

Extended beyond a(5) by Klaus Brockhaus, Jun 19 2009
Edited by Klaus Brockhaus, Jul 05 2009; M. F. Hasler, Dec 03 2014

A342129 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of g.f. 1/(1 - k*x + k*x^2).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, -1, 0, 1, 4, 6, 0, -1, 0, 1, 5, 12, 9, -4, 0, 0, 1, 6, 20, 32, 9, -8, 1, 0, 1, 7, 30, 75, 80, 0, -8, 1, 0, 1, 8, 42, 144, 275, 192, -27, 0, 0, 0, 1, 9, 56, 245, 684, 1000, 448, -81, 16, -1, 0, 1, 10, 72, 384, 1421, 3240, 3625, 1024, -162, 32, -1, 0
Offset: 0

Views

Author

Seiichi Manyama, Feb 28 2021

Keywords

Examples

			Square array begins:
  1,  1,  1, 1,   1,    1, ...
  0,  1,  2, 3,   4,    5, ...
  0,  0,  2, 6,  12,   20, ...
  0, -1,  0, 9,  32,   75, ...
  0, -1, -4, 9,  80,  275, ...
  0,  0, -8, 0, 192, 1000, ...
		

Crossrefs

Rows 0..1 give A000012, A001477.
Main diagonal gives (-1) * A109519(n+1).

Programs

  • Maple
    T:= (n, k)-> (<<0|1>, <-k|k>>^(n+1))[1, 2]:
    seq(seq(T(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Mar 01 2021
  • Mathematica
    T[n_, k_] := (-1)^n * Sum[If[k == j == 0, 1, (-k)^j] * Binomial[j, n - j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 28 2021 *)
  • PARI
    T(n, k) = (-1)^n*sum(j=0, n\2, (-k)^(n-j)*binomial(n-j, j));
    
  • PARI
    T(n, k) = (-1)^n*sum(j=0, n, (-k)^j*binomial(j, n-j));
    
  • PARI
    T(n, k) = round(sqrt(k)^n*polchebyshev(n, 2, sqrt(k)/2));

Formula

T(0,k) = 1, T(1,k) = k and T(n,k) = k*(T(n-1,k) - T(n-2,k)) for n > 1.
T(n,k) = (-1)^n * Sum_{j=0..floor(n/2)} (-k)^(n-j) * binomial(n-j,j) = (-1)^n * Sum_{j=0..n} (-k)^j * binomial(j,n-j).
T(n,k) = sqrt(k)^n * S(n, sqrt(k)) with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind.

A110212 a(n+3) = 6*a(n) - 5*a(n+2), a(0) = -1, a(1) = 5, a(2) = -25.

Original entry on oeis.org

-1, 5, -25, 119, -565, 2675, -12661, 59915, -283525, 1341659, -6348805, 30042875, -142164421, 672729275, -3183389125, 15063959099, -71283419845, 337316764475, -1596200067781, 7553299819835, -35742598512325, 169135792154939, -800359161855685, 3787340218204475
Offset: 0

Views

Author

Creighton Dement, Jul 16 2005

Keywords

Comments

Superseeker finds: a(n+1) - a(n) = ((-1)^n)*A030192(n+1) (Scaled Chebyshev U-polynomial evaluated at sqrt(6)/2)

Crossrefs

Programs

  • Maple
    eriestolist(series(1/((x-1)*(6*x^2+6*x+1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 2basejsumseq[A*B] with A = + 'i + 'ii' + 'ij' + 'ik' and B = + .5'i - .5'j + .5'k + .5i' + .5j' - .5k' - .5'ij' - .5'ik' + .5'ji' + .5'ki' Sumtype is set to: sum[(Y[0], Y[1], Y[2]),mod(3)

Formula

G.f.: 1/((x-1)*(6*x^2+6*x+1)).

A136526 Coefficients polynomials B(x, n) = ((1 + a + b)*x - c)*B(x, n-1) - a*b*B(x, n-2) with a = 3, b = 2, and c = 0.

Original entry on oeis.org

1, 0, 1, -6, 0, 6, 0, -42, 0, 36, 36, 0, -288, 0, 216, 0, 468, 0, -1944, 0, 1296, -216, 0, 4536, 0, -12960, 0, 7776, 0, -4104, 0, 38880, 0, -85536, 0, 46656, 1296, 0, -51840, 0, 311040, 0, -559872, 0, 279936, 0, 32400, 0, -544320, 0, 2379456, 0, -3639168, 0, 1679616
Offset: 0

Views

Author

Roger L. Bagula, Mar 23 2008

Keywords

Examples

			Triangle begins as:
     1;
     0,     1;
    -6,     0,      6;
     0,   -42,      0,    36;
    36,     0,   -288,     0,    216;
     0,   468,      0, -1944,      0,   1296;
  -216,     0,   4536,     0, -12960,      0,    7776;
     0, -4104,      0, 38880,      0, -85536,       0, 46656;
  1296,     0, -51840,     0, 311040,      0, -559872,     0, 279936;
		

References

  • Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986, page 93

Crossrefs

Programs

  • Magma
    f:= func< n,k | k eq 0 select (-1)^Floor(n/2) else (-1)^Floor((n-k)/2)*6^Floor((k-1)/2)*(1/k)*(6*Floor((n-k)/2) +k)*Binomial(Floor((n-k)/2) +k-1, k-1) >;
    A136526:= func< n,k | ((n+k+1) mod 2)*6^Floor(n/2)*f(n,k) >;
    [A136526(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 22 2022
    
  • Mathematica
    (* First program *)
    a= (b+1)/(b-1); c=0; b=2;
    B[x_, n_]:= B[x, n]= If[n<2, x^n, ((1+a+b)*x -c)*B[x, n-1] -a*b*B[x, n-2]];
    Table[CoefficientList[B[x,n], x], {n,0,10}]//Flatten
    (* Second program *)
    B[x_, n_]:= 6^(n/2)*(ChebyshevU[n, Sqrt[3/2]*x] -(5*x/Sqrt[6])*ChebyshevU[n-1, Sqrt[3/2]*x]);
    Table[CoefficientList[B[x, n], x]/6^Floor[n/2], {n,0,16}]//Flatten (* G. C. Greubel, Sep 22 2022 *)
  • SageMath
    def f(n,k):
        if (k==0): return (-1)^(n//2)
        else: return (-1)^((n-k)//2)*6^((k-1)//2)*(1/k)*(6*((n-k)//2) + k)*binomial(((n-k)//2) +k-1, k-1)
    def A136526(n,k): return ((n+k+1)%2)*6^(n//2)*f(n,k)
    flatten([[A136526(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 22 2022

Formula

T(n, k) = coefficients of the polynomials defined by B(x, n) = ((1 + a + b)*x - c)*B(x, n - 1) - a*b*B(x, n - 2) with B(x, 0) = 1, B(x, 1) = x, a = 3, b = 2, and c = 0.
From G. C. Greubel, Sep 22 2022: (Start)
T(n, k) = coefficients of the polynomials defined by B(x, n) = 6^(n/2)*(ChebyshevU(n, sqrt(3/2)*x) - (5*x/sqrt(6))*ChebyshevU(n-1, sqrt(3/2)*x)).
T(n, k) = (1/2)*(1+(-1)^(n+k))*6^floor(n/2)*f(n, k), where f(n, k) = (-1)^floor((n -k)/2)*6^floor((k-1)/2)*(1/k)*(6*floor((n-k)/2) + k)*binomial(floor((n-k)/2) + k -1, k-1), for k >= 1, and (-1)^floor(n/2) for k = 0.
T(n, 0) = (1/2)*(1+(-1)^n)*(-6)^floor(n/2).
T(n, 1) = (1/2)*(1-(-1)^n)*(-6)^floor((n-1)/2)*A016921(floor((n-1)/2)), n >= 1.
T(n, 2) = (1/2)*(1+(-1)^n)*(-1)^(1+Floor((n+1)/2))*6^floor((n+1)/2)*A000567(floor( (n+1)/2)), n >= 2.
T(n, 3) = (1/2)*(1-(-1)^n)*(-6)^floor((n+1)/2)*A002414(floor((n-1)/2)), n >= 3.
T(n, 4) = (3/2)*(1+(-1)^n)*(-6)^floor((n+1)/2)*A002419(floor((n-1)/2)), n >= 4.
T(n, 5) = 18*(1-(-1)^n)*(-6)^floor((n-1)/2)*A051843(floor((n-3)/2)), n >= 5.
T(n, n) = 6^(n-1) + (5/6)*[n=0].
T(n, n-2) = -6*A081106(n-2), n >= 2.
Sum_{k=0..n} T(n, k) = -6*A030192(n-3), n>= 0.
Sum_{k=0..floor(n/2)} T(n-k, k) = [n=0] - 5*[n=2].
G.f.: (1 - 5*x*y)/(1 - 6*x*y + 6*y^2). (End)

Extensions

Edited by G. C. Greubel, Sep 22 2022

A140766 a(n) = 6*a(n-1) - 6*a(n-2).

Original entry on oeis.org

1, 5, 24, 114, 540, 2556, 12096, 57240, 270864, 1281744, 6065280, 28701216, 135815616, 642686400, 3041224704, 14391229824, 68100030720, 322252805376, 1524916647936, 7215983055360, 34146398444544, 161582492335104, 764616563343360, 3618204426049536
Offset: 1

Views

Author

Gary W. Adamson and Roger L. Bagula, May 28 2008

Keywords

Comments

Companion sequence = A030192 beginning (1, 6, 30, 144, 684,...).

Examples

			a(5) = 540 = 6*a(4) - 6*a(3) = 6*(114) - 6*24.
a(5) = 540 = term (1,1) of X^5.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,-6},{1,5},30] (* Harvey P. Dale, Oct 01 2014 *)

Formula

a(n) = 6*a(n-1) - 6*a(n-2); a(1) = 1, a(2) = 5.
Term (1,1) of M^n, where M = the 3x3 matrix [1,1,1; 1,2,1; 3,1,3].
From R. J. Mathar, May 31 2008: (Start)
O.g.f.: x*(1 - x)/(1 - 6*x + 6*x^2).
a(n) = A030192(n-1) - A030192(n-2). (End)
a(n) = Sum_{1<=k<=n} A030523(n,k)*2^(k-1). - Philippe Deléham, Feb 19 2013
a(n) = (sqrt(3)/36)*((3 + sqrt(3))^(n+1) - (3 - sqrt(3))^(n+1)). - Taras Goy, Jan 03 2025
E.g.f.: (exp(3*x)*(cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) - 1)/6. - Stefano Spezia, Jan 04 2025

Extensions

More terms from R. J. Mathar, May 31 2008
More terms from Harvey P. Dale, Oct 01 2014

A167925 Triangle, T(n, k) = (sqrt(k+1))^(n-1)*ChebyshevU(n-1, sqrt(k+1)/2), read by rows.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 0, 2, 6, 12, -1, 0, 9, 32, 75, -1, -4, 9, 80, 275, 684, 0, -8, 0, 192, 1000, 3240, 8232, 1, -8, -27, 448, 3625, 15336, 47677, 122368, 1, 0, -81, 1024, 13125, 72576, 276115, 835584, 2158569, 0, 16, -162, 2304, 47500, 343440, 1599066, 5705728, 16953624, 44010000
Offset: 0

Views

Author

Roger L. Bagula, Nov 15 2009

Keywords

Examples

			Triangle begins as:
   0;
   1,  1;
   1,  2,   3;
   0,  2,   6,   12;
  -1,  0,   9,   32,    75;
  -1, -4,   9,   80,   275,   684;
   0, -8,   0,  192,  1000,  3240,   8232;
   1, -8, -27,  448,  3625, 15336,  47677, 122368;
   1,  0, -81, 1024, 13125, 72576, 276115, 835584, 2158569;
		

Crossrefs

Programs

  • Magma
    A167925:= func< n,k | Round((Sqrt(k+1))^(n-1)*Evaluate(ChebyshevSecond(n), Sqrt(k+1)/2)) >;
    [A167925(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 11 2023
    
  • Mathematica
    (* First program *)
    m[k_]= {{k,1}, {-1,1}};
    v[0, k_]:= {0,1};
    v[n_, k_]:= v[n, k]= m[k].v[n-1,k];
    T[n_, k_]:= v[n, k][[1]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
    (* Second program *)
    A167925[n_, k_]:= (Sqrt[k+1])^(n-1)*ChebyshevU[n-1, Sqrt[k+1]/2];
    Table[A167925[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 11 2023 *)
  • SageMath
    def A167925(n,k): return (sqrt(k+1))^(n-1)*chebyshev_U(n-1, sqrt(k+1)/2)
    flatten([[A167925(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 11 2023

Formula

T(n, k) = (-1)^(n+1) * [x^(n-1)]( 1/(1 + (k+1)*x + (k+1)*x^2) ). - Francesco Daddi, Aug 04 2011 (modified by G. C. Greubel, Sep 11 2023)
From G. C. Greubel, Sep 11 2023: (Start)
T(n, k) = (sqrt(k+1))^(n-1)*ChebyshevU(n-1, sqrt(k+1)/2).
T(n, 0) = A128834(n).
T(n, 1) = A009545(n) = A099087(n-1).
T(n, 2) = A057083(n-1).
T(n, 3) = A001787(n).
T(n, 4) = A030191(n-1).
T(n, 5) = A030192(n-1).
T(n, 6) = A030240(n-1).
T(n, 7) = A057084(n-1).
T(n, 8) = A057085(n).
T(n, 9) = A057086(n-1).
T(n, 10) = A190871(n).
T(n, 11) = A190873(n). (End)

Extensions

Edited by G. C. Greubel, Sep 11 2023

A361290 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..floor((n-1)/2)} k^(n-1-j) * binomial(n,2*j+1).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 4, 4, 0, 0, 1, 6, 14, 8, 0, 0, 1, 8, 30, 48, 16, 0, 0, 1, 10, 52, 144, 164, 32, 0, 0, 1, 12, 80, 320, 684, 560, 64, 0, 0, 1, 14, 114, 600, 1936, 3240, 1912, 128, 0, 0, 1, 16, 154, 1008, 4400, 11648, 15336, 6528, 256, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 11 2023

Keywords

Examples

			Square array begins:
  0,  0,   0,   0,    0,    0, ...
  1,  1,   1,   1,    1 ,   1, ...
  0,  2,   4,   6,    8,   10, ...
  0,  4,  14,  30,   52,   80, ...
  0,  8,  48, 144,  320,  600, ...
  0, 16, 164, 684, 1936, 4400, ...
		

Crossrefs

Column k=1..10 give A131577, A007070(n-1), A030192(n-1), A016129(n-1), A093145, A154237, A154248, A154348(n-1), A016175(n-1), A361293.
Main diagonal gives A360766.
Cf. A361432.

Programs

  • PARI
    T(n, k) = polcoef(lift(Mod('x, ('x-k)^2-k)^n), 1);

Formula

T(0,k) = 0, T(1,k) = 1; T(n,k) = 2 * k * T(n-1,k) - (k-1) * k * T(n-2,k).
T(n,k) = ((k + sqrt(k))^n - (k - sqrt(k))^n)/(2 * sqrt(k)) for k > 0.
G.f. of column k: x/(1 - 2 * k * x + (k-1) * k * x^2).
E.g.f. of column k: exp(k * x) * sinh(sqrt(k) * x) / sqrt(k) for k > 0.

A103280 Array read by antidiagonals, generated by the matrix M = [1,1,1;1,N,1;1,1,1].

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 9, 16, 1, 5, 14, 27, 44, 1, 6, 21, 48, 81, 120, 1, 7, 30, 85, 164, 243, 328, 1, 8, 41, 144, 341, 560, 729, 896, 1, 9, 54, 231, 684, 1365, 1912, 2187, 2448, 1, 10, 69, 352, 1289, 3240, 5461, 6528, 6561, 6688, 1, 11, 86, 513, 2276, 7175, 15336, 21845
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 27 2005

Keywords

Comments

Consider the matrix M = [1,1,1;1,N,1;1,1,1];
Characteristic polynomial of M is x^3 + (-N - 2)*x^2 + (2*N - 2)*x.
Now (M^n)[1,2] is equivalent to the recursion a(1) = 1, a(2) = N+2, a(n) = (N+2)a(n-1)+(2N-2)a(n-2). (This also holds for negative N and fractional N.)
a(n+1)/a(n) converges to the upper root of the characteristic polynomial ((N + 2) + sqrt((N - 2)^2 + 8))/2 for n to infinity.
Columns of array follow the polynomials:
0
1
N + 2
N^2 + 2*N + 6
N^3 + 2*N^2 + 8*N + 16
N^4 + 2*N^3 + 10*N^2 + 24*N + 44
N^5 + 2*N^4 + 12*N^3 + 32*N^2 + 76*N + 120
N^6 + 2*N^5 + 14*N^4 + 40*N^3 + 112*N^2 + 232*N + 328
N^7 + 2*N^6 + 16*N^5 + 48*N^4 + 152*N^3 + 368*N^2 + 704*N + 896
N^8 + 2*N^7 + 18*N^6 + 56*N^5 + 196*N^4 + 528*N^3 + 1200*N^2 + 2112*N + 2448
etc.

Examples

			Array begins:
1,2,6,16,44,120,328,896,2448,6688,...
1,3,9,27,81,243,729,2187,6561,19683, ...
1,4,14,48,164,560,1912,6528,22288,76096,...
1,5,21,85,341,1365,5461,21845,87381,349525,...
1,6,30,144,684,3240,15336,72576,343440,1625184,...
1,7,41,231,1289,7175,39913,221991,1234633,6866503,...
...
		

Crossrefs

Cf. A103279 (for (M^n)[1, 1]), A002605 (for N=0), A000244 (for N=1), A007070 (for N=2), A002450 (for N=3), A030192 (for N=4), A152268 (for N=5), A006131 (for N=-1), A000400 (bisection for N=-2), A015443 (for N=-3), A083102 (for N=-4).

Programs

  • PARI
    T12(N, n) = if(n==1,1,if(n==2,N+2,(N+2)*T12(N,n-1)-(2*N-2)*T12(N,n-2)))
    for(k=0,10,print1(k,": ");for(i=1,10,print1(T12(k,i),","));print())

Formula

T(N, 1)=1, T(N, 2)=N+2, T(N, n)=(N+2)*T(N, n-1)-(2*N-2)*T(N, n-2).

A162273 a(n) = ((2+sqrt(3))*(3+sqrt(3))^n + (2-sqrt(3))*(3-sqrt(3))^n)/2.

Original entry on oeis.org

2, 9, 42, 198, 936, 4428, 20952, 99144, 469152, 2220048, 10505376, 49711968, 235239552, 1113165504, 5267555712, 24926341248, 117952713216, 558158231808, 2641233111552, 12498449278464, 59143297001472, 279869086338048
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jun 29 2009

Keywords

Comments

Binomial transform of A001075 without initial term 1, inverse binomial transform of A162274.
The INVERTi transform yields A007051 without A007051(0). - R. J. Mathar, Jul 07 2009

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-3); S:=[ ((2+r)*(3+r)^n+(2-r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 05 2009
  • Maple
    seq(simplify(((2+sqrt(3))*(3+sqrt(3))^n+(2-sqrt(3))*(3-sqrt(3))^n)*1/2), n = 0 .. 22); # Emeric Deutsch, Jul 11 2009
  • Mathematica
    LinearRecurrence[{6,-6},{2,9},30] (* Harvey P. Dale, Dec 17 2019 *)

Formula

a(n) = 6*a(n-1) - 6*a(n-2) for n > 1; a(0) = 2, a(1) = 9.
G.f.: (2-3*x)/(1-6*x+6*x^2).
a(n) = 2*A030192-3*A030192(n-1). - R. J. Mathar, Feb 04 2021

Extensions

Edited and extended beyond a(5) by R. J. Mathar and Klaus Brockhaus, Jul 05 2009
Previous Showing 11-20 of 23 results. Next