cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A182676 a(n) is the largest n-digit number with exactly 8 divisors, a(n) = 0 if no such number exists.

Original entry on oeis.org

0, 88, 999, 9994, 99995, 999994, 9999994, 99999994, 999999998, 9999999995, 99999999998, 999999999998, 9999999999998, 99999999999998, 999999999999995, 9999999999999998, 99999999999999998, 999999999999999987, 9999999999999999995, 99999999999999999985, 999999999999999999995
Offset: 1

Views

Author

Jaroslav Krizek, Nov 27 2010

Keywords

Comments

a(n) is the largest n-digit number of the form p^7, p^3*q or p*q*r (p, q, r = distinct primes), a(n) = 0 if no such number exists.

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) local k;
          if n<2 then 0
        else for k from 10^n-1 while tau(k)<>8 by -1
             do od; k
          fi
        end:
    seq(a(n), n=1..20);
  • PARI
    a(n)=forstep(k=10^n-1,10^(n-1),-1,numdiv(k)==8 & return(k)) \\ M. F. Hasler, Nov 27 2010

Formula

a(n) = max {10^(n-1) <= k < 10^n : A000005(k)=8} if set is nonempty, else a(n) = 0.

Extensions

Edited by Alois P. Heinz, Nov 27 2010
Given terms double-checked with given PARI code by M. F. Hasler, Nov 27 2010
a(20)-a(21) from Amiram Eldar, Apr 09 2024

A330809 Triangular numbers having exactly 8 divisors.

Original entry on oeis.org

66, 78, 105, 136, 190, 231, 351, 406, 435, 465, 561, 595, 741, 861, 903, 946, 1378, 1431, 1653, 2211, 2278, 2485, 3081, 3655, 3741, 4371, 4465, 5151, 5253, 5995, 6441, 7021, 7503, 8515, 8911, 9453, 9591, 10011, 10153, 10585, 11026, 12561, 13366, 14878, 15051
Offset: 1

Views

Author

Jon E. Schoenfield, Jan 11 2020

Keywords

Comments

Terms may be categorized as belonging to the following types:
type 1: products of 3 distinct primes p,q,r such that 2*p*q + 1 = r: 78, 406, 465, ... (27108 of the first 100000 terms);
type 2: products of 3 distinct primes p,q,r such that 2*p*q - 1 = r: 66, 190, 435, ... (26848 of the first 100000 terms);
type 3: products of 3 distinct primes p,q,r such that p*q + 1 = 2*r: 231, 561, 1653, ... (23050 of the first 100000 terms);
type 4: products of 3 distinct primes p,q,r such that p*q - 1 = 2*r: 105, 595, 741, ... (22983 of the first 100000 terms);
type 5: products of the cube of a prime p and a distinct prime q such that 2*p^3 + 1 = q: 136, 31375, 3544453, ... (6 of the first 100000 terms);
type 6: products of the cube of a prime p and a distinct prime q such that 2*p^3 - 1 = q: 1431, 1774977571, 12642646591, ... (4 of the first 100000 terms);
type 7: products of the cube of a prime p and a distinct prime q such that p^3 - 1 = 2*q: the only term of this type is 351 = 3^3 * 13.
(No term is a product of the cube of a prime p and a distinct prime q such that p^3 + 1 = 2*q.)

Examples

			Type
(see
cmts)  Initial terms             Notes
-----  ------------------------  -----------------------------
  1    78, 406, 465, ...         p*q*r such that 2*p*q + 1 = r
  2    66, 190, 435, ...         p*q*r such that 2*p*q - 1 = r
  3    231, 561, 1653, ...       p*q*r such that p*q + 1 = 2*r
  4    105, 595, 741, ...        p*q*r such that p*q - 1 = 2*r
  5    136, 31375, 3544453, ...  p^3*q such that 2*p^3 + 1 = q
  6    1431, 1774977571, ...     p^3*q such that 2*p^3 - 1 = q
  7    351 (only)                p^3*q such that p^3 - 1 = 2*q
		

Crossrefs

Intersection of A000217 (triangular numbers) and A030626 (8 divisors).
Cf. A063440 (number of divisors of n-th triangular number), A292989 (triangular numbers having exactly 6 divisors).

Programs

  • Magma
    [k:k in [1..16000]| IsSquare(8*k+1) and NumberOfDivisors(k) eq 8]; // Marius A. Burtea, Jan 12 2020
  • Maple
    select(t -> numtheory:-tau(t) = 8, [seq(i*(i+1)/2, i=1..1000)]); # Robert Israel, Jan 13 2020
  • Mathematica
    Select[PolygonalNumber@ Range[180], DivisorSigma[0, #] == 8 &] (* Michael De Vlieger, Jan 11 2020 *)
  • PARI
    isok(k) = ispolygonal(k, 3) && (numdiv(k) == 8); \\ Michel Marcus, Jan 11 2020
    

A079836 First column of the triangle in which the n-th row contains n numbers with n divisors that lie between A079835(n) and A079835(n+1).

Original entry on oeis.org

1, 3, 9, 51, 81, 28577, 117649, 594823330, 595067236, 596971504
Offset: 1

Views

Author

Amarnath Murthy, Feb 15 2003

Keywords

Comments

1
3 5
9 25 49
51 55 57 58
81 625 2401 14641 28561
...
The 4th row consists of 4 consecutive elements of A030513, the 5th row 5 consecutive elements of A030514, the 6th and 7th rows consecutive elements of A030515 and A030516, the 8th of A030626, the 9th of A030627 etc. - R. J. Mathar, Mar 29 2007

Crossrefs

Extensions

a(6)-a(7) from R. J. Mathar, Mar 29 2007
a(8)-a(10) from Lambert Herrgesell (zero815(AT)googlemail.com), Feb 08 2008
a(2) and a(9) corrected by Pontus von Brömssen, Jan 14 2024

A137490 Numbers with 27 divisors.

Original entry on oeis.org

900, 1764, 2304, 4356, 4900, 6084, 6400, 10404, 11025, 12100, 12544, 12996, 16900, 19044, 23716, 26244, 27225, 28900, 30276, 30976, 33124, 34596, 36100, 38025, 43264, 49284, 52900, 53361, 56644, 60516, 65025, 66564, 70756, 73984, 74529
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^26 (subset of A089081), p^2*q^2*r^2 (like 900, 1764, 4356, squares of A007304) or p^2*q^8 (like 2304, 6400, subset of the squares of A030628) where p, q and r are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

Formula

A000005(a(n)) = 27.
Sum_{n>=1} 1/a(n) = (P(2)^3 + 2*P(6) - 3*P(2)*P(4))/6 + P(2)*P(8) - P(10) + P(26) = 0.00453941..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

A139416 a(n) is the smallest positive integer k such that d(k) = d(k+2*n) = 2*n, where d(m) (A000005) is the number of positive divisors of m, or 0 if no such k exists.

Original entry on oeis.org

3, 6, 12, 70, 600281, 60, 1458, 264, 450, 266875, 12670498046853, 480, 3998684814453099, 11968722, 299538, 3640, 49921080474853515591, 1980, 6107691150665283203125, 14960, 575047378296833, 4068173828125, 13936286848094463348388671875, 6552, 5035427051913
Offset: 1

Views

Author

Leroy Quet, Apr 20 2008

Keywords

Comments

Does this sequence have a term for every positive integer n, or are there no solutions for some n?
There is no solution for any odd positive integer n to d(k) = d(k+n) = n.
If n is prime, then a(n) exists if and only if there exist either three primes p, q, r such that p^(2*n-1) +- 2*n = q^(n-1)*r or four primes p_1, q_1, p_2, q_2 such that p_1^(n-1)*q_1 + 2*n = p_2^(n-1)*q_2. - Vladimir Shevelev, Jul 14 2015

Examples

			For a(4) we want the smallest integer m such that d(m) = d(m+8) = 8. The positive integers that have 8 divisors each form the sequence: 24, 30, 40, 42, 54, 56, 66, 70, 78, 88, 102, 104, 105, 110, ... (A030626)
The first (not necessarily adjacent) pair of integers with 8 divisors each that is separated by exactly 8 is (70,78). So a(4) is the least element of this pair, which is 70.
Let n=5, a(5) = 600281. According to our comment, 600281 is the smallest number such that there exist either three primes p, q, r such that p^9 +- 10 = q^4*r or four primes p_1, q_1, p_2, q_2 such that p_1^4*q_1 + 10 = p_2^4*q_2. Here p_1 = 11, q_1 = 41, p_2 = 3, q_2 = 7411. - _Vladimir Shevelev_, Jul 14 2015
		

Crossrefs

A subsequence of A175304.

Programs

  • Mathematica
    f[n_] := Block[{a = {}, d, k, lim = 1000000}, d[x_] := DivisorSigma[0, x]; Do[k = 1; While[Nand[d[k] == d[k + d[k]], d[k] == 2 i] && k <= lim, k++]; If[k > lim, AppendTo[a, 0], AppendTo[a, k]], {i, n}]; a]; f@ 10 (* Michael De Vlieger, Jul 13 2015 *)
  • PARI
    A_simple(n)=local(m=2);n*=2;until(numdiv(m)==n&numdiv(m+n)==n,m++);m
    A_try_pair(p,q,n,limit)=
    {
    /* Helper for A_prime() */
    /* Look for solution which is 0 mod p^(n-1) and -n*2 mod q^(n-1) */
    local(m = chinese(Mod(0,p^(n-1)), Mod(-n*2,q^(n-1))));
    forstep(x=lift(m), limit, component(m,1),
    if(isprime(x\p^(n-1)) & isprime((x+n*2)\q^(n-1)), return(x)));
    limit
    }
    A_try_above_below(m,n)=
    {
    /* Helper for A_prime() */
    /* Function presumes that numdiv(m)==n*2 */
    if(numdiv(m-n*2)==n*2, limit=m-n*2,
    if(numdiv(m+n*2)==n*2, limit=m,
    0))
    }
    A_prime(n,limit,pairmax=30)=
    {
    if (n%2==0 || !isprime(n), error("Only works for odd primes"));
    if (default(primelimit) < limit\nextprime(pairmax+1)^(n-1),
    default(primelimit, limit\nextprime(pairmax+1)^(n-1));
    );
    /* Evens with numdiv==n*2 are {2^(n*2-1)} u {2*p^(n-1)} u {2^(n-1)*p} */
    /* Potential solutions must come from different sets */
    /* Try above and below first two sets */
    A_try_above_below(2^(n*2-1),n);
    forprime(p=3, (limit\2)^(1/(n-1)),
    if (A_try_above_below(2*p^(n-1),n), break));
    /* Odd numbers with numdiv==n*2 are {p^(n*2-1)} u {p^(n-1)*q} */
    /* Try where a(n) and a(n)+n*2 are (small prime)^(n-1)*(big prime) */
    forprime(p=3, pairmax, forprime(q=3, pairmax,
    if (p!=q, limit = A_try_pair(p,q,n,limit))));
    /* Try above and below all other odd numbers with numdiv==n*2 */
    forprime(p=pairmax+1, (limit\3)^(1/(n-1)),
    forprime(q=3, limit\p^(n-1),
    if (p!=q & A_try_above_below(p^(n-1)*q,n), break)));
    forprime(p=3, limit^(1/21),
    if (A_try_above_below(p^21,n), break));
    limit
    } /* Martin Fuller, Apr 20 2008 */

Extensions

First 10 terms calculated by M. F. Hasler
a(11)-a(20) from Martin Fuller, Apr 20 2008
a(21)-a(25) from Jinyuan Wang, Sep 24 2021

A297401 Non-sphenic numbers with exactly 8 divisors.

Original entry on oeis.org

24, 40, 54, 56, 88, 104, 128, 135, 136, 152, 184, 189, 232, 248, 250, 296, 297, 328, 344, 351, 375, 376, 424, 459, 472, 488, 513, 536, 568, 584, 621, 632, 664, 686, 712, 776, 783, 808, 824, 837, 856, 872, 875, 904, 999, 1016, 1029, 1048, 1096, 1107, 1112, 1161, 1192
Offset: 1

Views

Author

G. L. Honaker, Jr., Dec 29 2017

Keywords

Comments

These are the numbers of the form p^3*q (with primes p and q distinct) or p^7. Thus it is the union of A065036 and A092759, and this can be used for direct enumeration. - Alex Meiburg, Dec 31 2017

Crossrefs

Subsequence of A030626.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    P:= select(isprime, [2,seq(i,i=3..N)]):
    R:= NULL:
    for p in P do
      if p^7 <= N then R:= R, p^7 fi;
      if p^3 > N then break fi;
      for q in P while p^3*q <= N do if q <> p then R:= R, p^3*q fi od:
    od:
    sort([R]); # Robert Israel, Dec 31 2017
  • Mathematica
    Select[Range@ 1200, And[DivisorSigma[0, #] == 8, Nand[PrimeNu[#] == 3, PrimeOmega[#] == 3]] &] (* Michael De Vlieger, Dec 29 2017 *)
  • PARI
    isok(n) = !((bigomega(n)==3) && (omega(n)==3)) && (numdiv(n) == 8); \\ Michel Marcus, Dec 29 2017
    
  • Python
    from sympy import primepi, primerange, integer_nthroot
    def A297401(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(x//p**3) for p in primerange(integer_nthroot(x,3)[0]+1))+primepi(integer_nthroot(x,4)[0])-primepi(integer_nthroot(x,7)[0]))
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Equals {A030626} \ {A007304}. - Omar E. Pol, Dec 30 2017

Extensions

More terms from Michel Marcus, Dec 29 2017

A350767 a(1)=1. Thereafter, a(n+1) is the least unused number k such that either d(j(n)) properly divides d(k) or d(k) properly divides d(j(n)), where j(n) = a(n)+1 and d is the divisor counting function A000005.

Original entry on oeis.org

1, 6, 8, 12, 10, 14, 2, 15, 48, 18, 20, 3, 28, 21, 5, 7, 11, 4, 22, 24, 32, 13, 17, 9, 19, 23, 26, 29, 27, 25, 30, 33, 31, 37, 40, 34, 41, 35, 49, 43, 47, 16, 38, 42, 39, 46, 44, 53, 51, 59, 45, 54, 56, 60, 50, 61, 66, 52, 55, 57, 67, 71, 58, 62, 72, 63, 192, 65
Offset: 1

Views

Author

David James Sycamore, Jan 14 2022

Keywords

Comments

If d(j(n)) is prime p then d(a(n+1)) must be properly divisible by p. In practice the proper divisor for computation of a(n+1) toggles between d(j(n)) and d(k).
Conjecture: This is a permutation of the positive integers. Numbers with the same number (tau) of divisors appear in their natural orders (e.g., primes, semiprimes, squares).
The plot, after the first few terms, resolves itself into points tightly packed on and around a straight line of slope 1, with exceptional points appearing as significant upward or downward "spikes".
When d(j(n)) is prime p appearing for the first time in the sequence J = {d(j(a(n)), n>=1}, then a(n+1) is the smallest number with 2p divisors, which produces a significantly large upward spike above the straight line (6, 12, 48, 192, 3072, 12288, ...).
When d(j(a(n)) is 2p, seen for the first time in J, then a(n+1) is the smallest number with p divisors, which produces a large downward spike, below the straight line (2, 4, 16, 64, 1024, 4096, ...).
The sequence of fixed points starts: 1, 46, 69, 74, 110, 140, 142, 152, 154, 178, ... apparently becoming denser as n increases.

Examples

			a(1)=1, so j(1)=2, d(j(1))=2, a prime, so we need the smallest unused k such that d(k) is properly divisible by 2, hence a(2)=6.
a(2)=6, j(2)=4, d(j(2))=3, a prime so we need the smallest unused k such that d(k) is properly divisible by 3, hence a(3)=8.
		

Crossrefs

Programs

Extensions

More terms from Michael De Vlieger, Jan 14 2022
Previous Showing 21-27 of 27 results.