cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A186503 Decimal expansion of the solution x to x^x = 13.

Original entry on oeis.org

2, 6, 4, 1, 0, 6, 1, 9, 1, 6, 4, 8, 4, 3, 9, 5, 8, 0, 8, 4, 1, 1, 8, 3, 9, 0, 0, 4, 0, 6, 5, 7, 9, 1, 2, 5, 4, 9, 3, 0, 8, 7, 3, 2, 2, 4, 6, 0, 5, 9, 4, 9, 6, 6, 7, 7, 1, 5, 2, 7, 2, 7, 2, 4, 0, 4, 8, 1, 8, 9, 5, 4, 6, 4, 0, 1, 5, 3, 1, 0, 4, 1, 9, 9, 5, 1, 3, 5, 4, 0, 2, 1, 3, 5, 2, 8, 2, 8, 7, 4, 6, 1
Offset: 1

Views

Author

Keywords

Examples

			2.6410619164843958084118390040657912549308732...
		

Crossrefs

Programs

  • Mathematica
    x=13;RealDigits[Log[x]/ProductLog[Log[x]],10,103][[1]]
    RealDigits[x/.FindRoot[x^x==13,{x,2.6},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Feb 07 2025 *)

Formula

Equals log(13)/LambertW(log(13)). - Alois P. Heinz, Jun 16 2021

A186504 Decimal expansion of the solution x to x^x = 14.

Original entry on oeis.org

2, 6, 7, 8, 5, 2, 3, 4, 8, 5, 8, 9, 1, 2, 9, 9, 5, 8, 1, 3, 0, 1, 1, 9, 9, 0, 0, 1, 0, 0, 9, 9, 5, 0, 6, 1, 5, 7, 7, 8, 6, 9, 9, 1, 7, 5, 5, 6, 1, 7, 3, 6, 5, 7, 7, 8, 6, 0, 8, 7, 2, 5, 0, 8, 8, 2, 3, 9, 9, 0, 0, 6, 9, 2, 8, 6, 8, 7, 8, 9, 9, 6, 2, 9, 4, 7, 4, 8, 7, 5, 1, 0, 0, 7, 1, 3, 8, 4, 0, 9, 1, 5
Offset: 1

Views

Author

Keywords

Examples

			2.6785234858912995813011990010099506157786992..
		

Crossrefs

Programs

  • Mathematica
    x=14;RealDigits[Log[x]/ProductLog[Log[x]],10,200][[1]]
    RealDigits[x/.FindRoot[x^x==14,{x,2},WorkingPrecision->120]][[1]] (* Harvey P. Dale, Aug 08 2023 *)

A344930 Decimal expansion of the real solution to x^x = 15.

Original entry on oeis.org

2, 7, 1, 3, 1, 6, 3, 6, 0, 4, 0, 0, 4, 2, 3, 9, 2, 0, 9, 5, 7, 6, 4, 0, 1, 2, 7, 6, 8, 2, 8, 5, 0, 9, 3, 7, 1, 8, 7, 8, 1, 8, 2, 4, 9, 9, 6, 7, 1, 4, 5, 1, 6, 0, 6, 7, 3, 1, 6, 3, 9, 5, 1, 8, 1, 4, 1, 7, 5, 7, 1, 4, 3, 9, 6, 2, 9, 0, 5, 2, 3, 9, 8, 1, 5, 1, 1, 5, 1
Offset: 1

Views

Author

Christoph B. Kassir, Jun 02 2021

Keywords

Comments

2.7131636040042392095764012768285093718781...

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[15]/ProductLog[Log[15]], 10, 100][[1]] (* Amiram Eldar, Jun 02 2021 *)
    RealDigits[x/.FindRoot[x^x==15,{x,2.7},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Apr 18 2022 *)

Formula

Equals log(15)/W(log(15)), where W(z) is the Lambert W Function.

A302973 Decimal expansion of the solution to (1 + x)*x^x = (1 - x)^x.

Original entry on oeis.org

2, 9, 3, 8, 6, 0, 0, 1, 3, 7, 8, 7, 3, 9, 9, 0, 3, 7, 5, 0, 9, 8, 3, 5, 1, 6, 4, 3, 5, 3, 4, 4, 7, 9, 2, 5, 9, 3, 5, 5, 3, 9, 4, 8, 9, 5, 7, 6, 3, 6, 7, 6, 2, 6, 3, 2, 4, 5, 8, 0, 0, 9, 6, 9, 2, 0, 4, 7, 4, 0, 2, 3, 2, 1, 3, 4, 9, 0, 1, 5, 4, 1, 5, 8, 2, 0, 7, 8, 0, 7, 3, 6, 9, 2, 4, 4, 4, 6, 3, 7, 8, 4, 8, 0
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Apr 16 2018

Keywords

Examples

			0.2938600137873990375098351643534479...
		

Crossrefs

Programs

  • Mathematica
    Take[RealDigits[x /. FindRoot[(1 + x)*x^x == (1 - x)^x, {x, 1/2}, WorkingPrecision -> 120], 10][[1]], 105] (* Vaclav Kotesovec, Apr 17 2018 *)
  • PARI
    solve(x=1/10, 1, (1 + x)*x^x - (1 - x)^x) \\ Michel Marcus, Apr 16 2018

Extensions

More digits from Alois P. Heinz, Apr 16 2018

A153510 Continued fraction for the positive solution of the equation x^x = 2.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 3, 1, 2, 1, 24, 2, 1, 52, 6, 4, 1, 3, 4, 2, 1, 14, 2, 5, 1, 7, 2, 2, 2, 1, 1, 1, 6, 3, 1, 1, 13, 1, 1, 1, 9, 1, 3, 1, 2, 9, 162, 1, 1, 195, 4, 1, 3, 47, 1, 1, 1, 1, 2, 1, 2, 1, 1, 5, 1, 1, 2, 4, 1, 1, 1, 2, 11, 1, 2, 7, 1, 2, 14, 1, 28, 1, 4, 1, 3, 1, 1, 1, 10, 2, 7, 5, 3, 1, 2, 4, 5, 35, 1
Offset: 0

Views

Author

Vladimir Reshetnikov, Dec 28 2008

Keywords

Crossrefs

Cf. A030798 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Log[2]/ProductLog[Log[2]], 100]

Extensions

Offset changed by Andrew Howroyd, Aug 03 2024

A173566 a(n+1) = a(n)^a(n), with a(1) = 2.

Original entry on oeis.org

2, 4, 256
Offset: 1

Views

Author

Keywords

Comments

The next term, a(4), is 2^2048, with 617 digits.
From Natan Arie Consigli, Dec 01 2015: (Start)
Possible other sequence with the same first three entries:
a(1) = 2;
a(2) = Triangle(2);
a(3) = Square(2);
a(4) = Pentagon(2);
etc., where, in Steinhaus-Moser notation,
Triangle(n) = n^n;
Square(n) = Triangle(Triangle...(n)...) (with n inside n nested triangles);
Pentagon(n) = Square(Square...(n)...)(with n inside n nested squares);
etc.
Start with a(1) = 2, a(2) = triangle(2) = 4, a(3) = square(2) = 256, a(4) = pentagon(4) = 256^^256 (power tower of 256s with height 256).
(End)

Examples

			a(3) = square(2) = triangle(triangle(2)) = triangle(2^2) = 4^4 = 256.
a(4) = 2^2048.
a(5) = 2^(2^2059).
		

Crossrefs

Cf. A030798 ("preceding term"), A054874 (log base 2).

Programs

  • Magma
    [n le 1 select 2 else Self(n-1)^Self(n-1): n in [1..4]]; // Vincenzo Librandi, Dec 17 2015
  • Mathematica
    RecurrenceTable[{a[1] == 2, a[n] == a[n - 1]^a[n - 1]}, a, {n, 4}] (* Vincenzo Librandi, Dec 17 2015 *)

A199550 Decimal expansion of the positive root of x^x^x = 2.

Original entry on oeis.org

1, 4, 7, 6, 6, 8, 4, 3, 3, 7, 3, 5, 7, 8, 6, 9, 9, 4, 7, 0, 8, 9, 2, 3, 5, 5, 8, 5, 3, 7, 3, 8, 8, 9, 8, 3, 8, 6, 5, 5, 1, 6, 8, 9, 3, 0, 9, 8, 5, 5, 2, 6, 9, 8, 4, 4, 6, 4, 4, 0, 3, 1, 4, 7, 6, 2, 1, 6, 9, 8, 0, 0, 2, 9, 1, 8, 8, 2, 1, 5, 2, 8, 5, 9, 7, 1, 4, 7, 2, 4, 0, 8, 4, 4, 0, 2, 6, 9, 5, 7, 9, 8, 3, 2, 2
Offset: 1

Views

Author

Vladimir Reshetnikov, Nov 07 2011

Keywords

Comments

As follows from Gelfond's theorem, the root is irrational, so this sequence is infinite and aperiodic. Its transcendence is, apparently, still an open problem. - Vladimir Reshetnikov, Apr 27 2013

Examples

			1.4766843373578699470892355853738898386551689309855269844644...
		

Crossrefs

Cf. A030798.

Programs

  • Mathematica
    First[RealDigits[Root[{Function[x, x^x^x - 2], 1.477`4}], 10, 100]]
  • PARI
    solve(x=1,2,x^x^x-2) \\ Charles R Greathouse IV, Apr 14 2014

A225134 Decimal expansion of the positive root of x^x^x^x = 2.

Original entry on oeis.org

1, 4, 4, 6, 6, 0, 1, 4, 3, 2, 4, 2, 9, 8, 6, 4, 1, 7, 4, 5, 9, 7, 3, 3, 3, 9, 8, 7, 5, 9, 7, 6, 6, 1, 4, 8, 0, 6, 8, 7, 3, 2, 1, 0, 4, 2, 2, 8, 2, 2, 8, 0, 0, 2, 6, 3, 6, 3, 9, 0, 4, 7, 7, 2, 0, 9, 8, 5, 7, 0, 7, 6, 5, 9, 8, 3, 1, 0, 1, 6, 1, 4, 7, 4, 9, 2, 3, 5, 7, 2, 0, 0, 8, 1, 0, 9, 7, 6, 3, 0, 9, 9, 7, 5, 3
Offset: 1

Views

Author

Vladimir Reshetnikov, Apr 29 2013

Keywords

Comments

It is unknown if this root is rational, algebraic irrational, or transcendental.

Examples

			1.4466014324298641745973339875976614806873210422822800263639...
		

Crossrefs

Cf. A030798, A199550, A225153 (continued fraction), A225208 (Engel expansion).

Programs

  • Mathematica
    RealDigits[FindRoot[x^x^x^x == 2, {x, 1}, WorkingPrecision -> 110][[1,2]], 10, 105][[1]]
  • PARI
    solve(x=1,2,x^x^x^x-2) \\ Charles R Greathouse IV, Apr 15 2014

A194624 Decimal expansion of the smaller solution to x^x = 3/4.

Original entry on oeis.org

1, 5, 3, 5, 1, 6, 7, 8, 9, 6, 6, 3, 9, 5, 2, 9, 4, 7, 1, 5, 0, 0, 6, 8, 3, 3, 2, 9, 7, 8, 4, 6, 3, 2, 2, 7, 7, 1, 1, 2, 6, 9, 4, 8, 5, 4, 8, 9, 9, 6, 9, 6, 2, 0, 3, 1, 7, 9, 8, 5, 4, 2, 8, 3, 3, 4, 3, 7, 2, 6, 1, 3, 6, 4, 1, 9, 0, 5, 8, 3, 0, 2, 9, 3, 6, 8, 7, 6, 6, 0, 5, 3, 0, 1, 9, 3, 7, 1, 9, 4
Offset: 0

Views

Author

Jonathan Sondow, Sep 02 2011

Keywords

Comments

Since (1/e)^(1/e) < 3/4 < 1, the equation x^x = 3/4 has two solutions x = a and x = b with 0 < a < 1/e < b < 1. Both solutions are transcendental (see Proposition 2.2 in Sondow-Marques 2010).

Examples

			0.15351678966395294715006833297846322771126948548996962031798542833437261364190...
		

Crossrefs

Cf. A030798 (x^x = 2), A072364 ((1/e)^(1/e)), A194625 (larger solution to x^x = 3/4).

Programs

  • Mathematica
    x = x /. FindRoot[x^x == 3/4, {x, 0.1}, WorkingPrecision -> 120]; RealDigits[x, 10, 100] // First

A194625 Decimal expansion of the larger solution to x^x = 3/4.

Original entry on oeis.org

6, 3, 6, 2, 6, 2, 9, 3, 9, 2, 9, 4, 5, 3, 1, 0, 1, 9, 9, 8, 7, 5, 1, 3, 7, 5, 5, 2, 0, 4, 2, 3, 3, 1, 7, 3, 1, 1, 7, 8, 6, 7, 0, 5, 7, 9, 3, 6, 2, 6, 2, 2, 9, 4, 8, 8, 6, 5, 4, 0, 6, 4, 5, 4, 0, 6, 3, 8, 9, 2, 1, 4, 4, 0, 2, 7, 9, 9, 2, 7, 3, 3, 9, 0, 9, 1, 4, 8, 0, 5, 4, 8, 9, 4, 6, 9, 6, 2, 0, 7
Offset: 0

Views

Author

Jonathan Sondow, Sep 02 2011

Keywords

Comments

Since (1/e)^(1/e) < 3/4 < 1, the equation x^x = 3/4 has two solutions x = a and x = b with 0 < a < 1/e < b < 1. Both solutions are transcendental (see Proposition 2.2 in Sondow-Marques 2010).

Examples

			0.636262939294531019987513755204233173117867057936262294886540645406389214402799...
		

Crossrefs

Cf. A030798 (x^x = 2), A072364 ((1/e)^(1/e)), A194624 (smaller solution to x^x = 3/4).

Programs

  • Mathematica
    x = x /. FindRoot[x^x == 3/4, {x, 0.7}, WorkingPrecision -> 120]; RealDigits[x, 10, 100] // First
Previous Showing 11-20 of 25 results. Next