cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 59 results. Next

A052234 Primes p from A031924 such that A052180(primepi(p)) = 17.

Original entry on oeis.org

727, 1033, 1747, 2837, 4093, 5387, 5897, 6337, 7121, 7867, 8887, 9467, 10723, 11437, 13751, 15077, 15313, 15791, 16097, 16333, 17047, 17117, 17321, 19597, 20177, 21401, 22147, 23167, 28541, 28573, 30307, 31327, 33641, 41017, 41597
Offset: 1

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

A052235 Primes p from A031924 such that A052180(primepi(p)) = 19.

Original entry on oeis.org

433, 587, 1117, 2411, 4007, 4993, 5107, 5147, 5563, 6703, 6857, 6971, 7541, 10847, 12973, 14951, 18787, 21221, 24373, 24527, 27947, 29201, 30341, 30643, 30757, 36913, 37483, 38321, 39877, 40487, 42767, 43451, 45007, 46301, 47287, 48883, 49037
Offset: 1

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[For[p = 23, p < 50000, p = q, q = NextPrime[p]; If[q == p + 6 && Max[ FactorInteger[#][[1, 1]]& /@ Range[p+1, q-1]] == 19, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Jan 29 2018 *)

A052236 Primes p from A031924 such that A052180(primepi(p)) = 29.

Original entry on oeis.org

1187, 1361, 2287, 3797, 4723, 5711, 7451, 10061, 10987, 12497, 17021, 18587, 20327, 22067, 25603, 26417, 32563, 41263, 41381, 43991, 50833, 53617, 55997, 60521, 64871, 71713, 77977, 81457, 84011, 87317, 87547, 89983, 90971, 98801
Offset: 1

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

A052237 Primes p from A031924 such that A052180(primepi(p)) = 31.

Original entry on oeis.org

1453, 3313, 5981, 6911, 8707, 15467, 22721, 25447, 25633, 26627, 29167, 30097, 31957, 42187, 42373, 42437, 46093, 48017, 48947, 49627, 51673, 52667, 58061, 59113, 62897, 68477, 74923, 78643, 78707, 105613, 106357, 107351, 108217
Offset: 1

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_] := Max[FactorInteger[#][[1, 1]] & /@ Range[ p+1, NextPrime[p] - 1]]; Select[Prime@ Range@ 10300, NextPrime[#] == # + 6 && f[#] == 31 &] (* Giovanni Resta, May 30 2018 *)

A052238 Primes p from A031924 such that A052180(p) = 23.

Original entry on oeis.org

941, 1217, 1907, 3607, 4391, 6047, 6367, 8117, 8713, 9127, 9221, 10093, 10601, 11981, 12577, 14741, 19571, 19753, 23203, 23893, 24677, 25367, 28723, 29921, 36131, 36313, 39857, 41143, 42937, 51907, 52183, 52691, 54667, 55633, 58211
Offset: 1

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

A052247 Maximal value of smallest prime divisors of the 5 composite numbers between A031924(n) and A031925(n).

Original entry on oeis.org

5, 5, 7, 5, 5, 7, 5, 7, 5, 7, 13, 5, 5, 11, 7, 5, 5, 5, 5, 7, 13, 5, 19, 5, 5, 5, 13, 5, 5, 19, 5, 5, 13, 11, 5, 7, 17, 11, 5, 23, 13, 7, 11, 5, 5, 17, 11, 7, 5, 19, 7, 7, 29, 23, 5, 5, 5, 5, 5, 29, 37, 5, 31, 5, 7, 5, 7, 5, 5, 11, 5, 17, 7, 13, 5, 11, 23, 5, 11, 5, 5, 5, 47, 5, 29, 5, 5, 13, 5
Offset: 1

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Examples

			The 5 composites between A031924(1) = 23 and A031925(1) = 29 are 24, 25, 26, 27, 28; their smallest prime divisors are 2 5 2 3 2; the maximal value is 5; so a(1) = 5.
		

Crossrefs

A078862 Smallest primes from A031924, each belonging to those different residue class of mod 210 which are listed in A078861. Arranged according to possible least positive residues mod 210.

Original entry on oeis.org

1901, 433, 647, 23, 31, 3607, 251, 47, 53, 61, 1117, 73, 83, 727, 941, 733, 947, 331, 131, 557, 353, 151, 157, 373, 167, 173, 601, 607, 3761, 1033
Offset: 1

Views

Author

Labos Elemer, Dec 13 2002

Keywords

Examples

			Several terms are equal to corresponding ones in A078861, while others are larger like: 1033=4.210+193, where r=193 is in A078861.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := Mod[Prime[x], 210] d[x_] := Prime[x+1]-Prime[x] t=Table[0, {210}]; Do[s=f[n]; If[Equal[d[n], 6]&&s<211&&t[[s]]==0, t[[s]]=Prime[n]], {n, 1, 1000}]; t

A023201 Primes p such that p + 6 is also prime. (Lesser of a pair of sexy primes.)

Original entry on oeis.org

5, 7, 11, 13, 17, 23, 31, 37, 41, 47, 53, 61, 67, 73, 83, 97, 101, 103, 107, 131, 151, 157, 167, 173, 191, 193, 223, 227, 233, 251, 257, 263, 271, 277, 307, 311, 331, 347, 353, 367, 373, 383, 433, 443, 457, 461, 503, 541, 557, 563, 571, 587, 593, 601, 607, 613, 641, 647
Offset: 1

Views

Author

Keywords

Crossrefs

A031924 (primes starting a gap of 6) and A007529 together give this (A023201).
Cf. A046117 (a(n)+6), A087695 (a(n)+3), A098428, A000040, A010051, A006489 (subsequence).

Programs

  • Haskell
    a023201 n = a023201_list !! (n-1)
    a023201_list = filter ((== 1) . a010051 . (+ 6)) a000040_list
    -- Reinhard Zumkeller, Feb 25 2013
    
  • Magma
    [n: n in [0..40000] | IsPrime(n) and IsPrime(n+6)]; // Vincenzo Librandi, Aug 04 2010
    
  • Maple
    A023201 := proc(n)
        option remember;
        if n = 1 then
            5;
        else
            for a from procname(n-1)+2 by 2 do
                if isprime(a) and isprime(a+6) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, May 28 2013
  • Mathematica
    Select[Range[10^2], PrimeQ[ # ]&&PrimeQ[ #+6] &] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
    Select[Prime[Range[120]],PrimeQ[#+6]&] (* Harvey P. Dale, Mar 20 2018 *)
  • PARI
    is(n)=isprime(n+6)&&isprime(n) \\ Charles R Greathouse IV, Mar 20 2013

Formula

From M. F. Hasler, Jan 02 2020: (Start)
a(n) = A046117(n) - 6 = A087695(n) - 3.
A023201 = { p = A000040(k) | A000040(k+1) = p+6 or A000040(k+2) = p+6 } = A031924 U A007529. (End)

A007529 Prime triples: p; p+2 or p+4; p+6 all prime.

Original entry on oeis.org

5, 7, 11, 13, 17, 37, 41, 67, 97, 101, 103, 107, 191, 193, 223, 227, 277, 307, 311, 347, 457, 461, 613, 641, 821, 823, 853, 857, 877, 881, 1087, 1091, 1277, 1297, 1301, 1423, 1427, 1447, 1481, 1483, 1487, 1607, 1663, 1693, 1783, 1867, 1871, 1873, 1993, 1997
Offset: 1

Views

Author

Keywords

Comments

Or, prime(m) such that prime(m+2) = prime(m)+6. - Zak Seidov, May 07 2012

References

  • H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see p. 65.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [NthPrime(n): n in [1..310] | (NthPrime(n)+6) eq NthPrime(n+2)]; // Bruno Berselli, May 07 2012
    
  • Maple
    N:= 10000: # to get all terms <= N
    Primes:= select(isprime, [seq(2*i+1, i=1..floor((N+5)/2))]):locs:= select(t -> Primes[t+2]-Primes[t]=6, [$1..nops(Primes)-2]):
    Primes[locs]; # Robert Israel, Apr 30 2015
  • Mathematica
    ptrsQ[n_]:=PrimeQ[n+6]&&(PrimeQ[n+2]||PrimeQ[n+4])
    Select[Prime[Range[400]],ptrsQ]  (* Harvey P. Dale, Mar 08 2011 *)
  • PARI
    p=2;q=3;forprime(r=5,1e4,if(r-p==6,print1(p", "));p=q;q=r) \\ Charles R Greathouse IV, May 07 2012

Formula

a(n) = A098415(n) - 6. - Zak Seidov, Apr 30 2015

A286385 a(n) = A003961(n) - A000203(n).

Original entry on oeis.org

0, 0, 1, 2, 1, 3, 3, 12, 12, 3, 1, 17, 3, 9, 11, 50, 1, 36, 3, 21, 23, 3, 5, 75, 18, 9, 85, 43, 1, 33, 5, 180, 17, 3, 29, 134, 3, 9, 29, 99, 1, 69, 3, 33, 97, 15, 5, 281, 64, 54, 23, 55, 5, 255, 19, 177, 35, 3, 1, 147, 5, 15, 171, 602, 35, 51, 3, 45, 49, 87, 1, 480, 5, 9, 121, 67, 47, 87, 3, 381, 504, 3, 5, 271, 25, 9, 35, 171, 7, 291, 75, 93, 57, 15, 41, 963
Offset: 1

Views

Author

Antti Karttunen, May 09 2017

Keywords

Comments

Are all terms nonnegative? This question is equivalent to the question posed in A285705.
From Antti Karttunen, Aug 05 2020: (Start)
The answer to the above question is yes. Because both A000203 and A003961 are multiplicative sequences, it suffices to prove that for any prime p, and e >= 1, q^e >= sigma(p^e) = ((p^(1+e))-1) / (p-1), where q = A151800(p), i.e., the next larger prime after p. If p is a lesser twin prime, then q = p+2 (and this difference can't be less than 2, apart from case p=2), and it is easy to see that (n+2)^e > ((n^(e+1)) - 1) / (n-1), for all n >= 2, e >= 1.
See comments in A326042.
(End)
This is the inverse Möbius transform of A337549, from which it is even easier to see that all terms are nonnegative. - Antti Karttunen, Sep 22 2020

Crossrefs

Cf. A326057 [= gcd(a(n), A252748(n))].

Programs

  • Mathematica
    Array[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] - DivisorSigma[1, #] &, 96] (* Michael De Vlieger, Oct 05 2020 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A286385(n) = (A003961(n) - sigma(n));
    for(n=1, 16384, write("b286385.txt", n, " ", A286385(n)));
    
  • Python
    from sympy import factorint, nextprime, divisor_sigma as D
    from operator import mul
    def a048673(n):
        f = factorint(n)
        return 1 if n==1 else (1 + reduce(mul, [nextprime(i)**f[i] for i in f]))/2
    def a(n): return 2*a048673(n) - D(n) - 1 # Indranil Ghosh, May 12 2017
  • Scheme
    (define (A286385 n) (- (A003961 n) (A000203 n)))
    

Formula

a(n) = A285705(A048673(n)) - 1 = 2*A048673(n) - A000203(n) - 1.
a(n) = A336852(n) - A336851(n). - Antti Karttunen, Aug 05 2020
a(n) = Sum_{d|n} A337549(d). - Antti Karttunen, Sep 22 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-q(p))) - Pi^2/12 = 1.24152934..., where q(p) = nextprime(p) (A151800). - Amiram Eldar, Dec 21 2023
Previous Showing 11-20 of 59 results. Next