cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 83 results. Next

A229481 Final digit of 1^n + 2^n + ... + n^n.

Original entry on oeis.org

0, 1, 5, 6, 4, 5, 1, 4, 2, 5, 5, 6, 0, 1, 5, 0, 8, 3, 9, 0, 6, 1, 5, 6, 0, 5, 1, 4, 8, 5, 5, 6, 6, 1, 5, 0, 4, 3, 9, 0, 2, 1, 5, 6, 6, 5, 1, 4, 4, 5, 5, 6, 2, 1, 5, 0, 0, 3, 9, 0, 8, 1, 5, 6, 2, 5, 1, 4, 0, 5, 5, 6, 8, 1, 5, 0, 6, 3, 9, 0, 4, 1, 5, 6, 8, 5, 1, 4, 6, 5, 5, 6, 4, 1, 5, 0, 2, 3, 9, 0
Offset: 0

Views

Author

Keywords

Comments

Cyclic with period 100.

Crossrefs

Programs

  • Maple
    a:= proc(n) local l; l:=[seq(add(k&^i mod 10, k=1..i) mod 10, i=0..99)]:
          proc(n) l[1+irem(n, 100)] end
        end():
    seq(a(n), n=0..200);  # Alois P. Heinz, Sep 26 2013
  • Mathematica
    Table[Mod[Sum[PowerMod[i, n, 10], {i, 1, n}], 10], {n, 0, 133}]
  • PARI
    a(n)=n%=100;lift(sum(k=1,n,Mod(k,10)^n)) \\ Charles R Greathouse IV, Dec 13 2013

Formula

a(n) = a(n-100). - Wesley Ivan Hurt, Jan 02 2024

A263022 a(n) = gcd(n, 1^(n-1) + 2^(n-1) + ... + (n-1)^(n-1)) for n > 1.

Original entry on oeis.org

1, 1, 4, 1, 3, 1, 8, 3, 5, 1, 12, 1, 7, 5, 16, 1, 9, 1, 20, 7, 11, 1, 24, 5, 13, 9, 28, 1, 15, 1, 32, 11, 17, 35, 36, 1, 19, 13, 40, 1, 21, 1, 44, 3, 23, 1, 48, 7, 25, 17, 52, 1, 27, 55, 56, 19, 29, 1, 60, 1, 31, 21, 64, 13, 33, 1, 68, 23, 35, 1, 72, 1, 37, 25, 76, 77, 39, 1, 80, 27, 41, 1, 84, 17, 43, 29, 88, 1, 45, 13, 92, 31, 47, 95, 96
Offset: 2

Views

Author

Thomas Ordowski, Oct 07 2015

Keywords

Comments

a(n) = 1 if and only if n is a prime or n is a Carmichael number.
a(n) is divisible by 4 if n is divisible by 4, otherwise a(n) is odd. - Robert Israel, Oct 08 2015
a(n) = n iff 4|n or n = 35, 55, 77, 95; A121707 ?
a(5005) = 11: this is the first case where a(n) is prime and A001222(n) > 3. - Altug Alkan, Oct 08 2015

Crossrefs

Cf. A002997 (see my Oct 09 2013 comment).

Programs

  • Maple
    f:= n -> igcd(n, add(j &^(n-1) mod n, j=1..n-1)):
    seq(f(n), n=2..1000); # Robert Israel, Oct 08 2015
  • Mathematica
    Table[GCD[n, Total@ Map[#^(n - 1) &, Range[n - 1]]], {n, 2, 96}] (* Michael De Vlieger, Oct 08 2015 *)
  • PARI
    vector(100, n, gcd(n+1, sum(k=1, n, k^n))) \\ Altug Alkan, Oct 08 2015

Formula

a(4n) = 4n.
a(n) = gcd(A031971(n-1), n). - Michel Marcus, Oct 08 2015

A302353 a(n) = Sum_{k=0..n} k^n*binomial(2*n-k,n).

Original entry on oeis.org

1, 1, 7, 69, 936, 16290, 345857, 8666413, 250355800, 8191830942, 299452606190, 12095028921250, 534924268768540, 25710497506696860, 1334410348734174285, 74379234152676275325, 4431350132232658244400, 281020603194039519937590, 18900157831016574533520330, 1343698678390575915132318870
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2018

Keywords

Comments

a(n) is the n-th term of the main diagonal of iterated partial sums array of n-th powers (starting with the first partial sums).

Examples

			For n = 4 we have:
------------------------
0   1    2    3    [4]
------------------------
0,  1,  17,   98,  354,  ... A000538 (partial sums of fourth powers)
0,  1,  18,  116,  470,  ... A101089 (partial sums of A000538)
0,  1,  19,  135,  605,  ... A101090 (partial sums of A101089)
0,  1,  20,  155,  760,  ... A101091 (partial sums of A101090)
0,  1,  21,  176, [936], ... A254681 (partial sums of A101091)
------------------------
therefore a(4) = 936.
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[k^n Binomial[2 n - k, n], {k, 0, n}], {n, 19}]]
    Table[SeriesCoefficient[HurwitzLerchPhi[x, -n, 0]/(1 - x)^(n + 1), {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ c * (r * (2-r)^(2-r) / (1-r)^(1-r))^n * n^n, where r = 0.69176629470097668698335106516328398961170464277337300459988208658267146... is the root of the equation (2-r) = (1-r) * exp(1/r) and c = 0.96374921279011282619632879505754646526289414675402231447188230355850496... - Vaclav Kotesovec, Apr 08 2018

A332624 a(n) = Sum_{k=1..n} ceiling(n/k)^n.

Original entry on oeis.org

1, 5, 36, 289, 3433, 47578, 842499, 16850338, 389415029, 10010878371, 285679026506, 8918295095267, 302973286652448, 11112691430262573, 437929106387544254, 18447028378472722051, 827256956775203666857, 39346558275376372606086, 1978429667078835508142129
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 17 2020

Keywords

Crossrefs

Programs

  • Magma
    [&+[Ceiling(n/k)^n:k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 17 2020
  • Mathematica
    Table[Sum[Ceiling[n/k]^n, {k, 1, n}], {n, 1, 19}]
    Table[n + Sum[Sum[(d + 1)^n - d^n, {d, Divisors[k]}], {k, 1, n - 1}], {n, 1, 19}]
    Table[SeriesCoefficient[x/(1 - x)^2 + x/(1 - x) Sum[((k + 1)^n - k^n) x^k/(1 - x^k), {k, 1, n}], {x, 0, n}], {n, 1, 19}]

Formula

a(n) = [x^n] x/(1 - x)^2 + (x/(1 - x)) * Sum_{k>=1} ((k + 1)^n - k^n) * x^k / (1 - x^k).
a(n) = n + Sum_{k=1..n-1} Sum_{d|k} ((d + 1)^n - d^n).

A341331 a(n) = n^n - (n-1)^n - (n-2)^n - ... - 1^n.

Original entry on oeis.org

1, 3, 18, 158, 1825, 26141, 446782, 8869820, 200535993, 5085658075, 142947350986, 4410243535402, 148156328308105, 5382924338773177, 210309307208574750, 8791961076113491704, 391581231268402937041, 18510377905675629883959, 925555262359725659407258
Offset: 1

Views

Author

Seiichi Manyama, Feb 09 2021

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;  n^n - add(k^n,k=1..n-1) end proc:
    map(f, [$1..30]); # Robert Israel, Feb 10 2021
  • Mathematica
    a[n_] := n^n - Sum[k^n, {k, 0, n - 1}]; Array[a, 20] (* Amiram Eldar, Apr 28 2021 *)
  • PARI
    a(n) = n^n-sum(k=0, n-1, k^n);

Formula

a(n) = A000312(n) - A121706(n).
a(n) = - A290844(n-1,n) for n > 1.

A344260 a(n) is the number of relations from an n-element set into a set of at most n elements.

Original entry on oeis.org

1, 3, 21, 585, 69905, 34636833, 69810262081, 567382630219905, 18519084246547628289, 2422583247133816584929793, 1268889750375080065623288448001, 2659754699919401766201267083003561985, 22306191045953951743035482794815064402563073, 748380193317489370459454048174977015562807531282433
Offset: 0

Views

Author

Stefano Spezia, May 13 2021

Keywords

Comments

Symmetrically, also the number of relations from a set of at most n elements into an n-element set.

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[(2^(n+n^2)-1)/(2^n-1),{n,13}]]

Formula

a(n) = (2^(n+n^2) - 1)/(2^n - 1) for n > 0 and a(0) = 1.
a(n) ~ 2^(n^2).
a(n) = A275779(n) + 1. - Hugo Pfoertner, May 14 2021

A366329 a(n) = Product_{k=1..n} Sum_{j=1..k} j^n.

Original entry on oeis.org

1, 5, 324, 589764, 52393770000, 347773153451938500, 244632735619259069507040000, 24547871392966749661547369532868031040, 455140097017244017295446005144727669016636127744000, 1960564895414510364772369567330640938816177001699555385515625000000
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Sum[j^n, {j, 1, k}], {k, 1, n}], {n, 1, 12}]
    Table[Product[HarmonicNumber[k, -n], {k, 1, n}], {n, 1, 12}] // FunctionExpand

Formula

a(n) = A036740(n) * Product_{k=1..n} Sum_{j=1..k} (j/k)^n.
a(n) ~ n!^n * c * d^n, where d = exp(-Integral_{x=0..1} log(1 - exp(-1/x)) dx) = 1.187538543919977798892363400109897833660222697152558038684860736484... and c = exp(1 - 1/(exp(1) - 1)) / (exp(1) - 1) = 0.88399704290317414073109479991305699114875723090346..., updated Apr 19 2024
a(n) ~ c * d^n * (2*Pi)^(n/2) * n^(n*(2*n+1)/2) / exp(n^2 - 1/12).

A366342 a(n) = Product_{k=1..n} Sum_{j=1..k} j^k.

Original entry on oeis.org

1, 5, 180, 63720, 281961000, 18939602331000, 22733280436308624000, 561162207057469095693888000, 322278252906706683140441912431680000, 4806568058842248598039183477606983722184000000, 2055653754202086984879290521714456895014175320595424000000
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Sum[j^k, {j, 1, k}], {k, 1, n}], {n, 1, 12}]
    Table[Product[HarmonicNumber[k, -k], {k, 1, n}], {n, 1, 12}] // FunctionExpand

Formula

a(n) = A002109(n) * Product_{k=1..n} Sum_{j=1..k} (j/k)^k.
a(n) ~ A002109(n) * c * d^n / n^f, where
d = 1/(1 - exp(-1)) = A185393
f = (exp(1) + 1) / (2*(exp(1) - 1)^2) = 0.629685240773129106752912520161993823...
c = 1.038111196610478473178942324022485064169644880240145128332184584611...
a(n) ~ A * c * d^n * n^(n*(n+1)/2 + 1/12 - f) / exp(n^2/4), where A is the Glaisher-Kinkelin constant A074962.

A368466 a(n) = Sum_{k=0..n} 2^k * k^n.

Original entry on oeis.org

1, 2, 18, 250, 4810, 118458, 3557610, 126109562, 5153959338, 238596116794, 12340467941098, 705262375055610, 44135963944338474, 3001795007526424250, 220466095716711140202, 17389850740043552754298, 1466156761178169939270826, 131580021359494993268692026
Offset: 0

Views

Author

Seiichi Manyama, Dec 25 2023

Keywords

Crossrefs

Main diagonal of A368479.

Programs

  • PARI
    a(n) = sum(k=0, n, 2^k*k^n);

Formula

a(n) ~ 2^n * n^n / (1 - exp(-1)/2). - Vaclav Kotesovec, Dec 26 2023

A264748 a(n) = Sum_{k = 1..n} (k^n - n^k).

Original entry on oeis.org

0, -1, -3, 14, 520, 11185, 239505, 5510652, 138456936, 3803230815, 113833152565, 3695302326650, 129479186068128, 4874312730972685, 196306448145080385, 8425000059348756472, 383956514250037779376, 18521535576956405481147, 942952190208348285876501
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 23 2015

Keywords

Examples

			a(1) = 1^1 - 1^1 = 0;
a(2) = 1^2 - 2^1 + 2^2 - 2^2 = -1;
a(3) = 1^3 - 3^1 + 2^3 - 3^2 + 3^3 - 3^3 = -3;
a(4) = 1^4 - 4^1 + 2^4 - 4^2 + 3^4 - 4^3 + 4^4 - 4^4 = 14;
a(5) = 1^5 - 5^1 + 2^5 - 5^2 + 3^5 - 5^3 + 4^5 - 5^4 + 5^5 - 5^5 = 520, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^n - n^k, {k, 1, n}], {n, 1, 20}]
    Join[{0}, Table[HarmonicNumber[n, -n] - n (n^n - 1)/(n - 1), {n, 2, 20}]]
  • PARI
    a(n) = sum(k=1, n, k^n - n^k); \\ Altug Alkan, Nov 23 2015

Formula

a(n) = A031971(n) - A031972(n).
a(n) = ((1 - n)*zeta(-n, n + 1) - n*(n^n - 1) + (n - 1)*zeta(-n))/(n - 1) for n>1, where zeta(s) is the Riemann zeta function and zeta(s, a) is the Hurwitz zeta function.
a(n) ~ n^n / (exp(1) - 1). - Vaclav Kotesovec, Jul 16 2025
Previous Showing 71-80 of 83 results. Next