A033296
Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis), where each step is (2,1),(1,2) or (1,-1) and start with (1,2).
Original entry on oeis.org
1, 1, 6, 42, 326, 2706, 23526, 211546, 1951494, 18366882, 175674054, 1702686090, 16686795846, 165079509042, 1646340228006, 16534463822010, 167081444125702, 1697551974416706, 17330661859937670, 177699201786231530
Offset: 0
G.f. A(x) = 1 + x + 6*x^2 + 42*x^3 + 326*x^4 + 2706*x^5 + 23526*x^6 + 211546*x^7 + 1951494*x^8 + 18366882*x^9 + 175674054*x^10 + ...
-
/* G.f. A(x) = (1/x)*Series_Reversion( x/C(x*C(x)^3) ) */
{a(n) = my(C = (1 - sqrt(1 - 4*x +x^2*O(x^n)))/(2*x)); polcoeff( (1/x)*serreverse(x/subst(C,x,x*C^3)), n)}
for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, May 28 2023
A108450
Number of pyramids in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) (a pyramid is a sequence u^pd^p or U^pd^(2p) for some positive integer p, starting at the x-axis).
Original entry on oeis.org
2, 10, 58, 402, 3122, 26010, 227050, 2049186, 18964194, 178976426, 1715905050, 16665027378, 163611970066, 1621103006010, 16189480081354, 162791835045698, 1646810150270914, 16748008972020554, 171135004105459194
Offset: 1
a(2)=10 because in the A027307(2)=10 paths we have altogether 10 pyramids (shown between parentheses): (ud)(ud), (ud)(Udd), (uudd), uUddd, (Udd)(ud), (Udd)(Udd), Ududd, UdUddd, Uuddd, (UUdddd).
-
A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: g:=2*z*A^2/(1-z): gser:=series(g,z=0,25): seq(coeff(gser,z^n),n=1..22);
-
Table[2 Sum[Sum[Binomial[2 k + 2, k - i] Binomial[2 k + i + 1, 2 k + 1], {i, 0, k}]/(k + 1), {k, 0, n - 1}], {n, 19}] (* Michael De Vlieger, Feb 29 2016 *)
-
a(n):=2*sum(sum(binomial(2*k+2,k-i)*binomial(2*k+i+1,2*k+1),i,0,k)/(k+1),k,0,n-1);
/* Vladimir Kruchinin, Feb 29 2016 */
-
{a(n)=local(y=2*x); for(i=1, n, y=(2*x*(2+y-x*y)^2)/((1-x)*(2-y+x*y)^2) + (O(x^n))^3); polcoeff(y, n)}
for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 17 2014
A108453
Number of pyramids of the first kind in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) (a pyramid of the first kind is a sequence u^pd^p for some positive integer p, starting at the x-axis).
Original entry on oeis.org
1, 5, 29, 201, 1561, 13005, 113525, 1024593, 9482097, 89488213, 857952525, 8332513689, 81805985033, 810551503005, 8094740040677, 81395917522849, 823405075135457, 8374004486010277, 85567502052729597, 878066090712156521
Offset: 1
a(2)=5 because in the A027307(2)=10 paths we have altogether 5 pyramids of the first kind (shown between parentheses): (ud)(ud), (ud)Udd, (uudd), uUddd, Udd(ud), UddUdd, Ududd, UdUddd, Uuddd, UUdddd.
-
A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: g:=z*A^2/(1-z): gser:=series(g,z=0,25): seq(coeff(gser,z^n),n=1..22);
-
{a(n)=local(y=x); for(i=1, n, y=x*(1+y-x*y)^2/((1-x)*(1-y+x*y)^2) + (O(x^n))^3); polcoeff(y, n)}
for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 17 2014
A371677
G.f. satisfies A(x) = 1 + x * A(x)^(5/2) * (1 + A(x)^(1/2))^2.
Original entry on oeis.org
1, 4, 48, 772, 14256, 285380, 6023552, 131991940, 2974096544, 68475379204, 1603913377040, 38099316926340, 915619571011024, 22222175033464260, 543894269096547296, 13409307961403740420, 332707806061304185408, 8301493488646359256580
Offset: 0
-
a(n, r=2, t=5, u=1) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));
A379251
G.f. A(x) satisfies A(x) = ( (1 + x*A(x))/(1 - x*A(x)^2) )^2.
Original entry on oeis.org
1, 4, 32, 340, 4144, 54724, 761712, 11004500, 163453472, 2480507524, 38292849280, 599455647828, 9493724671184, 151835354054212, 2448792546337360, 39781755539153748, 650386418008379200, 10692713526634029316, 176669496568313495520, 2931998993134971532116, 48854054306918652620912
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*n+3*k+1, k)*binomial(2*n+2*k+2, n-k)/(n+k+1));
A379252
G.f. A(x) satisfies A(x) = ( (1 + x*A(x))/(1 - x*A(x)^3) )^2.
Original entry on oeis.org
1, 4, 40, 572, 9552, 174004, 3352440, 67171500, 1385457568, 29220437860, 627287390664, 13661411796508, 301096488681200, 6703186665881876, 150517000234338072, 3404956079399106700, 77526315562007606080, 1775260286963982001860, 40857405217738915499880, 944584396250976659451388
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*n+5*k+1, k)*binomial(2*n+4*k+2, n-k)/(n+2*k+1));
A365622
Expansion of (1/x) * Series_Reversion( x*(1-x)^5/(1+x)^5 ).
Original entry on oeis.org
1, 10, 150, 2670, 52250, 1086002, 23533790, 525825830, 12026993010, 280220428890, 6627397194022, 158692955007390, 3839595257256330, 93725694152075010, 2305406918530451950, 57085385625207424342, 1421808255906105290210
Offset: 0
-
a(n) = sum(k=0, n, binomial(5*n+k+4, k)*binomial(5*(n+1), n-k))/(n+1);
A365839
Expansion of (1/x) * Series_Reversion( x*(1-x)^3/(1+x)^2 ).
Original entry on oeis.org
1, 5, 38, 345, 3454, 36786, 408848, 4687969, 55048310, 658645110, 8001060132, 98419541226, 1223430822028, 15344868505700, 193952279202660, 2467977904556145, 31589883835911846, 406463726382152142, 5254324418131556900, 68206459568715464110, 888731044203480723076
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*n+k+2, k)*binomial(2*(n+1), n-k))/(n+1);
A365840
Expansion of (1/x) * Series_Reversion( x*(1-x)^4/(1+x)^2 ).
Original entry on oeis.org
1, 6, 55, 602, 7263, 93192, 1247636, 17230290, 243669007, 3511010950, 51361157967, 760784343128, 11387857096900, 171988619895216, 2617571721008520, 40105744064042626, 618116513218831407, 9576289414539654450, 149053521972041737413
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*n+k+3, k)*binomial(2*(n+1), n-k))/(n+1);
A365841
Expansion of (1/x) * Series_Reversion( x*(1-x)^5/(1+x)^2 ).
Original entry on oeis.org
1, 7, 75, 959, 13512, 202433, 3164018, 51010415, 842090988, 14163385916, 241843189651, 4181341506009, 73054000725300, 1287786922627590, 22876030462690500, 409093644922627407, 7358978253387945404, 133067774551068558740, 2417375777620571832476
Offset: 0
-
a(n) = sum(k=0, n, binomial(5*n+k+4, k)*binomial(2*(n+1), n-k))/(n+1);
Comments