cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A216312 The prime ending in 9 is the only prime in a decade.

Original entry on oeis.org

149, 419, 479, 719, 809, 839, 929, 1009, 1049, 1249, 1259, 1319, 1399, 1409, 1709, 1889, 1949, 2039, 2099, 2129, 2179, 2309, 2459, 2579, 2609, 2729, 2789, 2819, 2879, 2939, 2999, 3079, 3109, 3119, 3299, 3359, 3389, 3449, 3659, 3719, 3779, 3989, 4049, 4229
Offset: 1

Views

Author

V. Raman, Sep 03 2012

Keywords

Comments

Primes of the form 10n+9 such that 10n+1, 10n+3, and 10n+7 are composite. - Charles R Greathouse IV, Sep 06 2012

Examples

			149 is prime but 141, 143 and 147 are all composite (being 3 * 47, 11 * 13 and 3 * 7^2 respectively), thus 149 is in the sequence.
		

Crossrefs

Subsequence of A030433. Cf. A032352, A007811, A078494, A030433.

Programs

  • Magma
    [p: p in PrimesUpTo(4300) | p mod 10 eq 9 and IsOne(#PrimesInInterval(10*t+1, 10*t+9)) where t is Floor(p/10)]; // Bruno Berselli, Sep 14 2012
  • Mathematica
    Select[Prime[Range[700]], Mod[#, 10] == 9 && Union[PrimeQ[{# - 8, # - 6, # - 2}]] == {False} &] (* Alonso del Arte, Sep 03 2012 *)
    Select[Table[10n+{1,3,7,9},{n,450}],Boole[PrimeQ[#]]=={0,0,0,1}&][[;;,4]] (* Harvey P. Dale, Mar 08 2023 *)

Formula

a(n) ~ 4n log n. - Charles R Greathouse IV, Sep 06 2012

A316630 Numbers k such that 10k+1, 10k+3, 10k+7, and 10k+9 are all composite, and k == 1 (mod 3).

Original entry on oeis.org

133, 196, 232, 256, 298, 328, 397, 403, 406, 418, 430, 457, 484, 640, 643, 664, 709, 727, 742, 802, 847, 865, 898, 907, 970, 991, 1012, 1054, 1057, 1081, 1087, 1096, 1120, 1153, 1156, 1213, 1231, 1246, 1327, 1354, 1360, 1381, 1411, 1423, 1426, 1435, 1480, 1504
Offset: 1

Views

Author

Patrick A. Thomas, Jul 09 2018

Keywords

Comments

The sequence contains all numbers of the form 50151*m + 42175. - Michael B. Porter, Jul 16 2018
If m is in the sequence, then so is m + 3*(10*m+1)*(10*m+3)*(10*m+7)*(10*m+9)*k for all k. - Robert Israel, Aug 08 2018

Examples

			1331 = 11^3, 1333 = 31*43, 1337 = 7*191, 1339 = 13*103, and 133 == 1 (mod 3), so 133 is a sequence member.
		

Crossrefs

Programs

  • MATLAB
    m=1; for s=1:510 v=[30*s+11,30*s+13,30*s+17,30*s+19]; if isprime(v)==0  sol(m)=3*s+1; m=m+1;end; end; sol % Marius A. Burtea, Sep 17 2019
    
  • Magma
    [3*s+1: s in [0..510] | forall{30*s+k: k in [11, 13, 17, 19] | not IsPrime(30*s+k)}]; // Marius A. Burtea, Sep 17 2019
  • Maple
    remove(t -> ormap(isprime, [10*t+1,10*t+3,10*t+7,10*t+9]), [seq(k,k=1..2000,3)]); # Robert Israel, Aug 08 2018
  • Mathematica
    Select[1 + 3 Range@510, Union[ PrimeQ[10 # + {1, 3, 7, 9}]] == {False} &] (* Robert G. Wilson v, Jul 16 2018 *)
    Select[Range[1,2000,3],AllTrue[10#+{1,3,7,9},CompositeQ]&]  (* Harvey P. Dale, Feb 24 2024 *)
  • PARI
    ok(k)={if(k%3==1, for(i=0, 4, if(isprime(10*k+2*i+1), return(0))); 1, 0)} \\ Andrew Howroyd, Jul 10 2018
    

A356690 Product of the prime numbers that are between 10*n and 10*(n+1).

Original entry on oeis.org

210, 46189, 667, 1147, 82861, 3127, 4087, 409457, 7387, 97, 121330189, 113, 127, 2494633, 149, 23707, 27221, 30967, 181, 1445140189, 1, 211, 11592209, 55687, 241, 64507, 70747, 75067, 79523, 293, 307, 30857731, 1, 111547, 121103, 126727, 367, 141367, 148987, 397, 164009, 419, 421
Offset: 0

Views

Author

Hemjyoti Nath, Aug 23 2022

Keywords

Comments

a(n) is prime iff n is in A216292. - Amiram Eldar, Aug 23 2022
For almost all n (in the sense of natural density), a(n) = 1. - Charles R Greathouse IV, Sep 30 2022

Examples

			210 = 2*3*5*7, 46189 = 11*13*17*19, 667 = 23*29, 1147 = 31*37, 82861 = 41*43*47.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ Select[Range[10 n + 1, 10 n + 9], PrimeQ]; Array[a, 43, 0]
  • PARI
    a(n) = vecprod(select(isprime, [10*n..10*(n+1)])); \\ Michel Marcus, Aug 24 2022
    
  • Python
    from math import prod
    from sympy import primerange
    def a(n): return prod(primerange(10*n, 10*(n+1)))
    print([a(n) for n in range(43)]) # Michael S. Branicky, Aug 23 2022
    
  • Python
    from math import prod
    from sympy import isprime
    def A356690(n): return prod(m for i in (1,3,7,9) if isprime(m:=10*n+i)) if n else 210 # Chai Wah Wu, Sep 23 2022

Formula

Let m(n) = {isprime(10n-9) * (10n-9), isprime(10n-8) * (10n-8), isprime(10n-7) * (10n-7), isprime(10n-5) * (10n-5), isprime(10n-3) * (10n-3), isprime(10n-1) * (10n-1)}, where isprime = A010051; then a(n) = product of nonzero terms from m(n).
a(n) = 1 for n in A032352. - Michel Marcus, Aug 23 2022
a(n) = Product_{i=1+pi(10*n)..pi(10*(n+1))} prime(i). - Alois P. Heinz, Aug 23 2022

A216289 Smallest k in which there are exactly n primes between 10*k and 10*k+9.

Original entry on oeis.org

20, 9, 2, 4, 0
Offset: 0

Views

Author

V. Raman, Sep 03 2012

Keywords

Crossrefs

Programs

  • Mathematica
    mx = 5; t = Table[-1, {mx}]; n = 0; found = 0; While[found < mx, ps = Select[Range[10*n, 10*n + 9], PrimeQ]; len = Length[ps]; If[t[[len + 1]] == -1, t[[len + 1]] = n; found++]; n++]; t (* T. D. Noe, Sep 03 2012 *)

A346979 Count of the prime decimal descendants of n.

Original entry on oeis.org

83, 63, 23, 22, 23, 11, 29, 23, 3, 4, 54, 1, 9, 14, 6, 7, 3, 4, 7, 40, 0, 4, 19, 15, 8, 7, 10, 14, 5, 6, 2, 7, 0, 16, 9, 11, 12, 13, 4, 1, 34, 1, 8, 14, 5, 1, 13, 5, 5, 16, 6, 0, 9, 0, 24, 4, 6, 19, 2, 9, 25, 16, 0, 7, 4, 4, 3, 11, 2, 7, 7, 4, 1, 15, 2, 8, 8
Offset: 0

Views

Author

Ya-Ping Lu, Aug 09 2021

Keywords

Comments

The number of direct decimal descendants (i.e., decimal children) of n is A038800(n). The number of prime decimal descendants of the n-th prime is A214342(p_n). a(n) is the number of prime decimal descendants of n, which include the prime decimal children of n, the prime decimal children of the prime decimal children of n, and so on.
a(0) = Sum_{m=1..4} (A214342(m) + 1); a(1) = Sum_{m=5..8} (A214342(m) + 1).
a(A032352(m)) = 0; a(A119289(m)) = 0.
A214342 is a subset, as A214342(m) = a(prime(m)).
Conjecture 1: a(n) <= 83. Conjecture 2: lim_{n->oo} (n0/n) = 1, where n0 is the number of zero terms, a(k) = 0, for k <= n.

Examples

			a(4) = 23. The 23 prime decimal descendants of 4 are shown in the tree below.
       _____ 4__________________________
      /      |                          \
     41   ___43______________            47
    /    /   |               \             \
  419  431  433               439          479
            / \              /   \        /   \
        4337  4339         4391  4397   4793  4799
             /  |  \        |     |     /  \
        43391 43397 43399 43913 43973 47933 47939
                            |
                         439133
                            |
                        4391339
		

Crossrefs

Programs

  • Mathematica
    Table[Length@Rest@Flatten[FixedPointList[(b=#;Select[Flatten[(a=#;FromDigits/@(Join[IntegerDigits@a,{#}]&/@If[b=={0},Range@9,{1,3,7,9}]))&/@b],PrimeQ])&,{n}]],{n,0,76}] (* Giorgos Kalogeropoulos, Aug 16 2021 *)
  • Python
    from sympy import isprime
    def p_count(k):
        global ct; d = [2, 3, 5, 7] if k == 0 else [1, 3, 7, 9]
        for i in range(4):
            m = 10*k + d[i]
            if isprime(m): ct += 1; p_count(m)
        return ct
    for n in range(100):
        ct = 0; print(p_count(n))
Previous Showing 31-35 of 35 results.