cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A195043 Concentric 11-gonal numbers.

Original entry on oeis.org

0, 1, 11, 23, 44, 67, 99, 133, 176, 221, 275, 331, 396, 463, 539, 617, 704, 793, 891, 991, 1100, 1211, 1331, 1453, 1584, 1717, 1859, 2003, 2156, 2311, 2475, 2641, 2816, 2993, 3179, 3367, 3564, 3763, 3971, 4181, 4400, 4621, 4851, 5083, 5324, 5567
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also concentric hendecagonal numbers. A033584 and A069173 interleaved.
Partial sums of A175885. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Programs

  • Haskell
    a195043 n = a195043_list !! n
    a195043_list = scanl (+) 0 a175885_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [11*n^2/4+7*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 30 2011
    
  • Mathematica
    LinearRecurrence[{2,0,-2,1},{0,1,11,23},50] (* Harvey P. Dale, May 20 2019 *)
  • PARI
    Vec(-x*(x^2+9*x+1)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Sep 15 2013

Formula

a(n) = 11*n^2/4 + 7*((-1)^n - 1)/8.
a(n) = -a(n-1) + A069125(n). - Vincenzo Librandi, Sep 30 2011
From Colin Barker, Sep 15 2013: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: -x*(x^2+9*x+1) / ((x-1)^3*(x+1)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/66 + tan(sqrt(7/11)*Pi/2)*Pi/sqrt(77). - Amiram Eldar, Jan 16 2023

A195045 Concentric 13-gonal numbers.

Original entry on oeis.org

0, 1, 13, 27, 52, 79, 117, 157, 208, 261, 325, 391, 468, 547, 637, 729, 832, 937, 1053, 1171, 1300, 1431, 1573, 1717, 1872, 2029, 2197, 2367, 2548, 2731, 2925, 3121, 3328, 3537, 3757, 3979, 4212, 4447, 4693, 4941, 5200, 5461, 5733, 6007, 6292, 6579, 6877, 7177, 7488, 7801, 8125
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also concentric tridecagonal numbers or concentric triskaidecagonal numbers.
Partial sums of A175886. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Programs

Formula

a(n) = 13*n^2/4+9*((-1)^n-1)/8.
From R. J. Mathar, Sep 28 2011: (Start)
G.f.: -x*(1+11*x+x^2) / ( (1+x)*(x-1)^3 ).
a(n)+a(n+1) = A069126(n+1). (End)
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>3. - Wesley Ivan Hurt, Nov 22 2015
Sum_{n>=1} 1/a(n) = Pi^2/78 + tan(3*Pi/(2*sqrt(13)))*Pi/(3*sqrt(13)). - Amiram Eldar, Jan 16 2023

A195048 Concentric 19-gonal numbers.

Original entry on oeis.org

0, 1, 19, 39, 76, 115, 171, 229, 304, 381, 475, 571, 684, 799, 931, 1065, 1216, 1369, 1539, 1711, 1900, 2091, 2299, 2509, 2736, 2965, 3211, 3459, 3724, 3991, 4275, 4561, 4864, 5169, 5491, 5815, 6156, 6499, 6859, 7221, 7600, 7981, 8379, 8779, 9196
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also concentric enneadecagonal numbers.

Crossrefs

Programs

Formula

a(n) = (19/4)*n^2 + (15/8)*((-1)^n - 1).
From Colin Barker, Sep 16 2012: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(1 + 17*x + x^2)/((1-x)^3*(1+x)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/114 + tan(sqrt(15/19)*Pi/2)*Pi/sqrt(285). - Amiram Eldar, Jan 17 2023

A195049 Concentric 21-gonal numbers.

Original entry on oeis.org

0, 1, 21, 43, 84, 127, 189, 253, 336, 421, 525, 631, 756, 883, 1029, 1177, 1344, 1513, 1701, 1891, 2100, 2311, 2541, 2773, 3024, 3277, 3549, 3823, 4116, 4411, 4725, 5041, 5376, 5713, 6069, 6427, 6804, 7183, 7581, 7981, 8400, 8821, 9261, 9703, 10164
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Crossrefs

Programs

Formula

a(n) = 21*n^2/4 + 17*((-1)^n-1)/8.
From Colin Barker, Sep 16 2012: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(1+19*x+x^2)/((1-x)^3*(1+x)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/126 + tan(sqrt(17/21)*Pi/2)*Pi/sqrt(357). - Amiram Eldar, Jan 17 2023

A194275 Concentric pentagonal numbers of the second kind: a(n) = floor(5*n*(n+1)/6).

Original entry on oeis.org

0, 1, 5, 10, 16, 25, 35, 46, 60, 75, 91, 110, 130, 151, 175, 200, 226, 255, 285, 316, 350, 385, 421, 460, 500, 541, 585, 630, 676, 725, 775, 826, 880, 935, 991, 1050, 1110, 1171, 1235, 1300, 1366, 1435, 1505, 1576, 1650, 1725, 1801, 1880, 1960, 2041, 2125
Offset: 0

Views

Author

Omar E. Pol, Aug 20 2011

Keywords

Comments

Quasipolynomial: trisections are (15*x^2 - 15*x + 2)/2, 5*(15*x^2 - 5*x)/2, and 5*(15*x^2 + 5*x)/2. - Charles R Greathouse IV, Aug 23 2011
Appears to be similar to cellular automaton. The sequence gives the number of elements in the structure after n-th stage. Positive integers of A008854 gives the first differences. For a definition without words see the illustration of initial terms in the example section.
Also partial sums of A008854.
Also row sums of an infinite square array T(n,k) in which column k lists 3*k-1 zeros followed by the numbers A008706 (see example).
For concentric pentagonal numbers see A032527. - Omar E. Pol, Sep 27 2011

Examples

			Using the numbers A008706 we can write:
0, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, ...
0, 0, 0,  0,  1,  5, 10, 15, 20, 25, 30, ...
0, 0, 0,  0,  0,  0,  0,  1,  5, 10, 15, ...
0, 0, 0,  0,  0,  0,  0,  0,  0,  0,  1, ...
And so on.
===========================================
The sums of the columns give this sequence:
0, 1, 5, 10, 16, 25, 35, 46, 60, 75, 91, ...
...
Illustration of initial terms (in a precise representation the pentagons should appear strictly concentric):
.                                             o
.                                           o   o
.                            o            o       o
.                          o   o        o     o     o
.               o        o       o    o     o   o     o
.             o   o    o     o     o   o     o o     o
.      o    o       o   o         o     o           o
.    o   o   o     o     o       o       o         o
. o   o o     o o o       o o o o         o o o o o
.
. 1    5        10          16                25
		

Crossrefs

Cf. similar sequences with the formula floor(k*n*(n+1)/(k+1)) listed in A281026.

Programs

  • Magma
    [Floor(5*n*(n+1)/6): n in [0..60]]; // Vincenzo Librandi, Sep 27 2011
  • Mathematica
    Table[Floor[5 n (n + 1)/6], {n, 0, 50}] (* Arkadiusz Wesolowski, Oct 03 2011 *)
  • PARI
    a(n)=5*n*(n+1)\6 \\ Charles R Greathouse IV, Aug 23 2011
    

Formula

G.f.: (-1 - 3*x - x^2)/((-1 + x)^3*(1 + x + x^2)). - Alexander R. Povolotsky, Aug 22 2011
a(n) = floor(5*n*(n+1)/6). - Arkadiusz Wesolowski, Aug 23 2011

Extensions

Name improved by Arkadiusz Wesolowski, Aug 23 2011
New name from Omar E. Pol, Sep 28 2011

A195046 Concentric 15-gonal numbers.

Original entry on oeis.org

0, 1, 15, 31, 60, 91, 135, 181, 240, 301, 375, 451, 540, 631, 735, 841, 960, 1081, 1215, 1351, 1500, 1651, 1815, 1981, 2160, 2341, 2535, 2731, 2940, 3151, 3375, 3601, 3840, 4081, 4335, 4591, 4860, 5131, 5415, 5701, 6000, 6301, 6615, 6931, 7260, 7591
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[15n^2/4+11((-1)^n-1)/8,{n,0,50}] (* or *) LinearRecurrence[ {2,0,-2,1},{0,1,15,31},50] (* Harvey P. Dale, Feb 23 2012 *)
  • PARI
    a(n)=15*n^2/4+11*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 15*n^2/4+11*((-1)^n-1)/8.
From Harvey P. Dale, Feb 23 2012: (Start)
a(0)=0, a(1)=1, a(2)=15, a(3)=31, a(n)=2*a(n-1)-2*a(n-3)+a(n-4).
G.f.: -((x*(1+x*(13+x)))/((-1+x)^3*(1+x))). (End)
Sum_{n>=1} 1/a(n) = Pi^2/90 + tan(sqrt(11/15)*Pi/2)*Pi/sqrt(165). - Amiram Eldar, Jan 16 2023

Extensions

a(1)=1 added by Harvey P. Dale, Feb 23 2012

A195047 Concentric 17-gonal numbers.

Original entry on oeis.org

0, 1, 17, 35, 68, 103, 153, 205, 272, 341, 425, 511, 612, 715, 833, 953, 1088, 1225, 1377, 1531, 1700, 1871, 2057, 2245, 2448, 2653, 2873, 3095, 3332, 3571, 3825, 4081, 4352, 4625, 4913, 5203, 5508, 5815, 6137, 6461, 6800, 7141, 7497, 7855, 8228, 8603, 8993
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also concentric heptadecagonal numbers or concentric heptakaidecagonal numbers.

Crossrefs

Programs

Formula

a(n) = 17*n^2/4+13*((-1)^n-1)/8. [Typo fixed by Ivan Panchenko, Nov 08 2013]
From R. J. Mathar, Sep 28 2011: (Start)
G.f.: -x*(1+15*x+x^2) / ( (1+x)*(x-1)^3 ).
a(n)+a(n+1) = A069130(n+1). (End)
From Bruno Berselli, Sep 29 2011: (Start)
a(n) = a(-n) = (34*n^2+13*(-1)^n-13)/8.
a(n) = A151978(A061925(n)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/102 + tan(sqrt(13/17)*Pi/2)*Pi/sqrt(221). - Amiram Eldar, Jan 16 2023

A195058 Concentric 23-gonal numbers.

Original entry on oeis.org

0, 1, 23, 47, 92, 139, 207, 277, 368, 461, 575, 691, 828, 967, 1127, 1289, 1472, 1657, 1863, 2071, 2300, 2531, 2783, 3037, 3312, 3589, 3887, 4187, 4508, 4831, 5175, 5521, 5888, 6257, 6647, 7039, 7452, 7867, 8303, 8741, 9200, 9661, 10143, 10627
Offset: 0

Views

Author

Omar E. Pol, Sep 28 2011

Keywords

Crossrefs

Column 23 of A195040.

Programs

Formula

a(n) = 23*n^2/4 + 19*((-1)^n-1)/8.
From Colin Barker, Sep 16 2012: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(1 + 21*x + x^2)/((1-x)^3*(1+x)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/138 + tan(sqrt(19/23)*Pi/2)*Pi/sqrt(437). - Amiram Eldar, Jan 17 2023

A195158 Concentric 24-gonal numbers.

Original entry on oeis.org

0, 1, 24, 49, 96, 145, 216, 289, 384, 481, 600, 721, 864, 1009, 1176, 1345, 1536, 1729, 1944, 2161, 2400, 2641, 2904, 3169, 3456, 3745, 4056, 4369, 4704, 5041, 5400, 5761, 6144, 6529, 6936, 7345, 7776, 8209, 8664, 9121, 9600, 10081, 10584, 11089
Offset: 0

Views

Author

Omar E. Pol, Sep 28 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 24, ..., and the same line from 1, in the direction 1, 49, ..., in the square spiral whose vertices are the generalized tetradecagonal numbers A195818. Main axis, perpendicular to A049598 in the same spiral.

Crossrefs

Column 24 of A195040.

Programs

Formula

a(n) = 6*n^2 + 5*((-1)^n-1)/2.
a(n) = -a(n-1) + A069190(n). - Vincenzo Librandi, Sep 30 2011
From Colin Barker, Sep 16 2012: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(1+22*x+x^2)/((1-x)^3*(1+x)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/144 + tan(sqrt(5/6)*Pi/2)*Pi/(4*sqrt(30)). - Amiram Eldar, Jan 17 2023

A032526 a(n) = floor(5*n^2/2).

Original entry on oeis.org

0, 2, 10, 22, 40, 62, 90, 122, 160, 202, 250, 302, 360, 422, 490, 562, 640, 722, 810, 902, 1000, 1102, 1210, 1322, 1440, 1562, 1690, 1822, 1960, 2102, 2250, 2402, 2560, 2722, 2890, 3062, 3240, 3422, 3610, 3802, 4000, 4202, 4410, 4622, 4840, 5062
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A032527.

Programs

Formula

a(n) = 2n^2 + floor(n^2/2). - Wesley Ivan Hurt, Jun 14 2013
From Bruno Berselli, Jun 14 2013: (Start)
G.f.: 2*x*(1+3*x+x^2)/((1+x)*(1-x)^3).
a(n) = 2*A032527(n). (End)
Sum_{n>=1} 1/a(n) = Pi^2/60 + tan(Pi/(2*sqrt(5)))*Pi/(2*sqrt(5)). - Amiram Eldar, Aug 15 2025
Previous Showing 11-20 of 23 results. Next