A195043
Concentric 11-gonal numbers.
Original entry on oeis.org
0, 1, 11, 23, 44, 67, 99, 133, 176, 221, 275, 331, 396, 463, 539, 617, 704, 793, 891, 991, 1100, 1211, 1331, 1453, 1584, 1717, 1859, 2003, 2156, 2311, 2475, 2641, 2816, 2993, 3179, 3367, 3564, 3763, 3971, 4181, 4400, 4621, 4851, 5083, 5324, 5567
Offset: 0
-
a195043 n = a195043_list !! n
a195043_list = scanl (+) 0 a175885_list
-- Reinhard Zumkeller, Jan 07 2012
-
[11*n^2/4+7*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 30 2011
-
LinearRecurrence[{2,0,-2,1},{0,1,11,23},50] (* Harvey P. Dale, May 20 2019 *)
-
Vec(-x*(x^2+9*x+1)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
A195045
Concentric 13-gonal numbers.
Original entry on oeis.org
0, 1, 13, 27, 52, 79, 117, 157, 208, 261, 325, 391, 468, 547, 637, 729, 832, 937, 1053, 1171, 1300, 1431, 1573, 1717, 1872, 2029, 2197, 2367, 2548, 2731, 2925, 3121, 3328, 3537, 3757, 3979, 4212, 4447, 4693, 4941, 5200, 5461, 5733, 6007, 6292, 6579, 6877, 7177, 7488, 7801, 8125
Offset: 0
-
a195045 n = a195045_list !! n
a195045_list = scanl (+) 0 a175886_list
-- Reinhard Zumkeller, Jan 07 2012
-
[13*n^2/4+9*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 29 2011
-
A195045:=n->13*n^2/4+9*((-1)^n-1)/8: seq(A195045(n), n=0..70); # Wesley Ivan Hurt, Nov 22 2015
-
Table[13 n^2/4 + 9 ((-1)^n - 1)/8, {n, 0, 50}] (* Wesley Ivan Hurt, Nov 22 2015 *)
-
a(n)=13*n^2/4+9*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
-
concat(0, Vec(-x*(1+11*x+x^2)/((1+x)*(x-1)^3) + O(x^50))) \\ Altug Alkan, Nov 22 2015
A195048
Concentric 19-gonal numbers.
Original entry on oeis.org
0, 1, 19, 39, 76, 115, 171, 229, 304, 381, 475, 571, 684, 799, 931, 1065, 1216, 1369, 1539, 1711, 1900, 2091, 2299, 2509, 2736, 2965, 3211, 3459, 3724, 3991, 4275, 4561, 4864, 5169, 5491, 5815, 6156, 6499, 6859, 7221, 7600, 7981, 8379, 8779, 9196
Offset: 0
-
LinearRecurrence[{2,0,-2,1},{0,1,19,39},50] (* Harvey P. Dale, May 17 2016 *)
-
a(n)=19*n^2/4+15*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
A195049
Concentric 21-gonal numbers.
Original entry on oeis.org
0, 1, 21, 43, 84, 127, 189, 253, 336, 421, 525, 631, 756, 883, 1029, 1177, 1344, 1513, 1701, 1891, 2100, 2311, 2541, 2773, 3024, 3277, 3549, 3823, 4116, 4411, 4725, 5041, 5376, 5713, 6069, 6427, 6804, 7183, 7581, 7981, 8400, 8821, 9261, 9703, 10164
Offset: 0
-
A195049:=n->21*n^2/4+17*((-1)^n-1)/8: seq(A195049(n), n=0..100); # Wesley Ivan Hurt, Jan 17 2017
-
LinearRecurrence[{2, 0, -2, 1}, {0, 1, 21, 43}, 50] (* Amiram Eldar, Jan 17 2023 *)
-
a(n)=21*n^2/4+17*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
A194275
Concentric pentagonal numbers of the second kind: a(n) = floor(5*n*(n+1)/6).
Original entry on oeis.org
0, 1, 5, 10, 16, 25, 35, 46, 60, 75, 91, 110, 130, 151, 175, 200, 226, 255, 285, 316, 350, 385, 421, 460, 500, 541, 585, 630, 676, 725, 775, 826, 880, 935, 991, 1050, 1110, 1171, 1235, 1300, 1366, 1435, 1505, 1576, 1650, 1725, 1801, 1880, 1960, 2041, 2125
Offset: 0
Using the numbers A008706 we can write:
0, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, ...
0, 0, 0, 0, 1, 5, 10, 15, 20, 25, 30, ...
0, 0, 0, 0, 0, 0, 0, 1, 5, 10, 15, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ...
And so on.
===========================================
The sums of the columns give this sequence:
0, 1, 5, 10, 16, 25, 35, 46, 60, 75, 91, ...
...
Illustration of initial terms (in a precise representation the pentagons should appear strictly concentric):
. o
. o o
. o o o
. o o o o o
. o o o o o o o
. o o o o o o o o o
. o o o o o o o
. o o o o o o o o
. o o o o o o o o o o o o o o o
.
. 1 5 10 16 25
Cf. similar sequences with the formula floor(k*n*(n+1)/(k+1)) listed in
A281026.
A195046
Concentric 15-gonal numbers.
Original entry on oeis.org
0, 1, 15, 31, 60, 91, 135, 181, 240, 301, 375, 451, 540, 631, 735, 841, 960, 1081, 1215, 1351, 1500, 1651, 1815, 1981, 2160, 2341, 2535, 2731, 2940, 3151, 3375, 3601, 3840, 4081, 4335, 4591, 4860, 5131, 5415, 5701, 6000, 6301, 6615, 6931, 7260, 7591
Offset: 0
-
Table[15n^2/4+11((-1)^n-1)/8,{n,0,50}] (* or *) LinearRecurrence[ {2,0,-2,1},{0,1,15,31},50] (* Harvey P. Dale, Feb 23 2012 *)
-
a(n)=15*n^2/4+11*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
A195047
Concentric 17-gonal numbers.
Original entry on oeis.org
0, 1, 17, 35, 68, 103, 153, 205, 272, 341, 425, 511, 612, 715, 833, 953, 1088, 1225, 1377, 1531, 1700, 1871, 2057, 2245, 2448, 2653, 2873, 3095, 3332, 3571, 3825, 4081, 4352, 4625, 4913, 5203, 5508, 5815, 6137, 6461, 6800, 7141, 7497, 7855, 8228, 8603, 8993
Offset: 0
-
LinearRecurrence[{2,0,-2,1},{0,1,17,35},50] (* Harvey P. Dale, Dec 23 2017 *)
-
a(n)=17*n^2/4+13*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
A195058
Concentric 23-gonal numbers.
Original entry on oeis.org
0, 1, 23, 47, 92, 139, 207, 277, 368, 461, 575, 691, 828, 967, 1127, 1289, 1472, 1657, 1863, 2071, 2300, 2531, 2783, 3037, 3312, 3589, 3887, 4187, 4508, 4831, 5175, 5521, 5888, 6257, 6647, 7039, 7452, 7867, 8303, 8741, 9200, 9661, 10143, 10627
Offset: 0
-
Table[23n^2/4 + 19((-1)^n - 1)/8, {n, 0, 49}] (* Alonso del Arte, Jan 23 2015 *)
LinearRecurrence[{2,0,-2,1},{0,1,23,47},50] (* Harvey P. Dale, Jul 22 2023 *)
-
a(n)=23*n^2/4+19*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
A195158
Concentric 24-gonal numbers.
Original entry on oeis.org
0, 1, 24, 49, 96, 145, 216, 289, 384, 481, 600, 721, 864, 1009, 1176, 1345, 1536, 1729, 1944, 2161, 2400, 2641, 2904, 3169, 3456, 3745, 4056, 4369, 4704, 5041, 5400, 5761, 6144, 6529, 6936, 7345, 7776, 8209, 8664, 9121, 9600, 10081, 10584, 11089
Offset: 0
-
[(12*n^2+5*(-1)^n-5)/2: n in [0..50]]; // Vincenzo Librandi, Sep 30 2011
-
LinearRecurrence[{2,0,-2,1},{0,1,24,49},50] (* Harvey P. Dale, Jan 28 2021 *)
-
a(n)=6*n^2+5*((-1)^n-1)/2 \\ Charles R Greathouse IV, Oct 07 2015
A032526
a(n) = floor(5*n^2/2).
Original entry on oeis.org
0, 2, 10, 22, 40, 62, 90, 122, 160, 202, 250, 302, 360, 422, 490, 562, 640, 722, 810, 902, 1000, 1102, 1210, 1322, 1440, 1562, 1690, 1822, 1960, 2102, 2250, 2402, 2560, 2722, 2890, 3062, 3240, 3422, 3610, 3802, 4000, 4202, 4410, 4622, 4840, 5062
Offset: 0
-
[Floor(5*n^2/2): n in [0..50]]; // Bruno Berselli, Jun 14 2013
-
A032526:=n->floor(5*n^2/2): seq(A032526(n), n=0..100); # Wesley Ivan Hurt, Feb 03 2017
-
Table[Floor[5 n^2/2], {n, 0, 50}] (* Bruno Berselli, Jun 14 2013 *)
LinearRecurrence[{2,0,-2,1},{0,2,10,22},50] (* Harvey P. Dale, Dec 14 2016 *)
Comments