cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A032786 Numbers k such that k(k+1)(k+2)...(k+15) / (k+(k+1)+(k+2)+...+(k+15)) is an integer.

Original entry on oeis.org

0, 3, 5, 6, 9, 10, 12, 15, 17, 20, 24, 25, 30, 31, 33, 38, 42, 45, 51, 53, 55, 60, 64, 66, 75, 77, 80, 87, 90, 105, 108, 114, 115, 129, 130, 141, 150, 155, 168, 174, 180, 185, 195, 207, 213, 220, 240, 246, 255, 262, 276, 285, 295, 305, 311, 330, 339, 350, 357
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

(d-15)/2 where d >= 15 divides 4108830350625. In particular, the sequence is finite. - Robert Israel, Jul 13 2018

Crossrefs

Programs

  • Maple
    sort([seq((t-15)/2, t=select(`>=`,numtheory:-divisors(4108830350625),15))]); # Robert Israel, Jul 13 2018
  • Mathematica
    Select[Range[0,500],IntegerQ[Times@@Range[#,#+15]/Total[Range[ #,#+15]]]&] (* Harvey P. Dale, Sep 02 2016 *)

Extensions

Definition corrected by Harvey P. Dale, Sep 02 2016
Offset changed by Robert Israel, Jul 13 2018

A032787 Numbers k such that k(k+1)(k+2)...(k+17) / (k+(k+1)+(k+2)+ ... +(k+17)) is an integer.

Original entry on oeis.org

0, 2, 4, 5, 8, 9, 11, 14, 16, 17, 19, 23, 24, 29, 30, 32, 34, 37, 41, 44, 50, 51, 52, 54, 59, 63, 65, 68, 74, 76, 79, 85, 86, 89, 102, 104, 107, 113, 114, 119, 128, 129, 136, 140, 149, 154, 167, 170, 173, 179, 184, 194, 204, 206, 212, 219, 221, 239, 245, 254
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

(d-17)/2 where d >= 17 divides 131939107925625. In particular, the sequence is finite. - Robert Israel, Jul 13 2018

Crossrefs

Programs

  • Maple
    sort([seq((t-17)/2, t=select(`>=`,numtheory:-divisors(131939107925625),17))]); # Robert Israel, Jul 13 2018
  • Mathematica
    Select[Range[0,300],IntegerQ[Times@@Range[#,#+17]/Total[Range[#,#+17]]]&] (* Harvey P. Dale, Sep 02 2016 *)

Extensions

Definition corrected by Harvey P. Dale, Sep 02 2016

A032788 Numbers k such that k(k+1)(k+2)...(k+19) / (k+(k+1)+(k+2)+...+(k+19)) is an integer.

Original entry on oeis.org

0, 1, 3, 4, 7, 8, 10, 13, 15, 16, 18, 19, 22, 23, 28, 29, 31, 33, 36, 38, 40, 43, 49, 50, 51, 53, 57, 58, 62, 64, 67, 73, 75, 76, 78, 84, 85, 88, 95, 101, 103, 106, 112, 113, 114, 118, 127, 128, 133, 135, 139, 148, 152, 153, 166, 169, 171, 172, 178, 183, 190
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

(d-19)/2 where d >= 19 divides 85734032330071125. In particular, the sequence is finite. - Robert Israel, Jul 13 2018

Crossrefs

Programs

  • Maple
    sort([seq((t-19)/2, t=select(`>=`,numtheory:-divisors(85734032330071125),19))]); # Robert Israel, Jul 13 2018
  • Mathematica
    Select[Range[0,190],IntegerQ[Times@@Range[#,#+19]/Total[Range[#,#+19]]]&] (* Harvey P. Dale, Sep 02 2016 *)
    Select[Range[0,190],With[{c=Range[#,#+19]},Mod[Times@@c,Total[c]]==0&]] (* Harvey P. Dale, Nov 20 2024 *)

Extensions

Definition corrected by Harvey P. Dale, Sep 02 2016
Offset changed by Robert Israel, Jul 13 2018

A071408 a(n+1) - 2*a(n) + a(n-1) = (2/3)*(1 + w^(n+1) + w^(2*n+2)) with a(1)=0, a(2)=1, and where w is the imaginary cubic root of unity.

Original entry on oeis.org

0, 1, 4, 7, 10, 15, 20, 25, 32, 39, 46, 55, 64, 73, 84, 95, 106, 119, 132, 145, 160, 175, 190, 207, 224, 241, 260, 279, 298, 319, 340, 361, 384, 407, 430, 455, 480, 505, 532, 559, 586, 615, 644, 673, 704, 735, 766, 799, 832, 865, 900, 935, 970, 1007, 1044
Offset: 1

Views

Author

Robert G. Wilson v, Jun 24 2002

Keywords

Comments

w = exp(2*Pi*i/3)= (-1 - sqrt(-3))/2. Beginning with a(2) the first differences are 3,3,3,5,5,5,7,7,7,9,9,9,11, etc.

Crossrefs

Cf. A071618.

Programs

  • Mathematica
    a[1] = 0; a[2] = 1; w = Exp[2Pi*I/3]; a[n_] := a[n] = Simplify[(2/3)(1 + w^n + w^(2n)) + 2a[n - 1] - a[n - 2]]; Table[ a[n], {n, 1, 60}]
    Table[If[n<3,n-1,Floor[((n+1)^2-4)/3]],{n,1,100}] (*  Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *)
    LinearRecurrence[{2,-1,1,-2,1},{0,1,4,7,10},60] (* Harvey P. Dale, Jun 10 2016 *)
  • PARI
    a(n)=n*(n+2)\3 - 1 \\ Charles R Greathouse IV, Mar 02 2017

Formula

a(n) = A032765(n)-1.
a(n) = floor((n-1)*(n+1)*(n+3)/(3*n+3)). - Gary Detlefs, Jul 13 2010
a(n) = (n-1)^2 - A030511(n-1). - Wesley Ivan Hurt, Jun 19 2013
G.f.: x^2*(1+x)*(x^2-x-1) / ( (1+x+x^2)*(x-1)^3 ). - R. J. Mathar, Jun 23 2013
a(n) = n + floor(n*(n-1)/3) - 1. - Bruno Berselli, Mar 02 2017

A278814 a(n) = ceiling(sqrt(3n+1)).

Original entry on oeis.org

1, 2, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18
Offset: 0

Views

Author

Mohammad K. Azarian, Nov 28 2016

Keywords

Crossrefs

Programs

  • Derive
    PROG(y := [], n := 100, LOOP(IF(n = -1, RETURN y), y := ADJOIN(CEILING(SQRT(1 + 3·n)), y), n := n - 1))
    
  • Maple
    seq(ceil(sqrt(3*k+1)), k=0..100); # Robert Israel, Nov 28 2016
  • Mathematica
    Table[Ceiling[Sqrt[3n+1]],{n,0,100}]
  • PARI
    a(n)=sqrtint(3*n)+1 \\ Charles R Greathouse IV, Nov 29 2016
    
  • Python
    from math import isqrt
    def A278814(n): return 1+isqrt(3*n) # Chai Wah Wu, Jul 28 2022

Formula

a(n) = ceiling(sqrt(3n+1)).
From Robert Israel, Nov 28 2016: (Start)
G.f.: (1-x)^(-1)*Sum_{k>=0} (x^(3*k^2)+x^(3*k^2+2*k+1)+x^(3*k^2+4*k+2)).
a(n+1) = a(n)+1 if n is in A032765, otherwise a(n+1) = a(n). (End)
Sum_{n>=0} (-1)^n/a(n) = log(2) (A002162). - Amiram Eldar, Jun 18 2025

A032797 Numbers n such that n(n+1)(n+2)...(n+10) /(n+(n+1)+(n+2)+...+(n+10)) is a multiple of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

Equals natural numbers minus '6,11,17,22,28,...' (= previous term +5,+6,+5,+6,...).

Crossrefs

Programs

  • Mathematica
    nmnQ[n_]:=With[{c=n+Range[0,10]},Divisible[Times@@c/Total[c],n]]; Select[ Range[ 100],nmnQ] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,0,1,-1},{1,2,3,4,5,7,8,9,10,12},80] (* Harvey P. Dale, May 07 2017 *)
  • PARI
    is(n)=factorback(vector(10,i,n+i))%(11*n+55)==0 \\ Charles R Greathouse IV, Aug 07 2016

Formula

From Chai Wah Wu, Dec 17 2016: (Start)
a(n) = a(n-1) + a(n-9) - a(n-10) for n > 10.
G.f.: x*(x^9 + x^8 + x^7 + x^6 + 2*x^5 + x^4 + x^3 + x^2 + x + 1)/(x^10 - x^9 - x + 1). (End)

Extensions

Typo in definition corrected by Zak Seidov, Aug 06 2016
Previous Showing 11-16 of 16 results.