cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A141785 Primes of the form -x^2 + 5*x*y + 5*y^2 (as well as of the form 9*x^2 + 15*x*y + 5*y^2).

Original entry on oeis.org

5, 11, 29, 41, 59, 71, 89, 101, 131, 149, 179, 191, 239, 251, 269, 281, 311, 359, 389, 401, 419, 431, 449, 461, 479, 491, 509, 521, 569, 599, 641, 659, 701, 719, 761, 809, 821, 839, 881, 911, 929, 941, 971, 1019, 1031, 1049, 1061, 1091, 1109, 1151, 1181, 1229, 1259
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (marcanmar(AT)alum.us.es), Jun 12 2008

Keywords

Comments

Discriminant = 45. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.

Examples

			a(2) = 29 because we can write 29 = -1^2 + 5*1*2 + 5*2^2 (or 29 = 9*1^2 + 15*1*1 + 5*1^2)
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A033212 (d=45), A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17): A141111, A141112 (d=65).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    Select[Prime[Range[250]], # == 5 || MatchQ[Mod[#, 45], Alternatives[11, 14, 26, 29, 41, 44]]&] (* Jean-François Alcover, Oct 28 2016 *)

A139492 Primes of the form x^2 + 5x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

7, 37, 43, 67, 79, 109, 127, 151, 163, 193, 211, 277, 331, 337, 373, 379, 421, 457, 463, 487, 499, 541, 547, 571, 613, 631, 673, 709, 739, 751, 757, 823, 877, 883, 907, 919, 967, 991, 1009, 1033, 1051, 1087, 1093, 1117, 1129, 1171, 1201, 1213, 1297, 1303
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

Reduced form is [1, 3, -3]. Discriminant = 21. Class number = 2.
Values of the quadratic form are {0, 1, 3, 4} mod 6, so this is a subsequence of A002476. - R. J. Mathar, Jul 30 2008
It can be checked that the primes p of the form x^2 + n*x*y + y^2, n >= 3, where x and y are nonnegative, depend on n mod 6 as follows: n mod 6 = 0 => p mod 12 = {1,5}; n mod 6 = 1 => p mod 12 = {1,7}; n mod 6 = 2 => p mod 12 = {1}; n mod 6 = 3 => p mod 12 = {1,5,7,11}; n mod 6 = 4 => p mod 12 = {1}; n mod 6 = 5 => p mod 12 = {1,7}. - Walter Kehowski, Jun 01 2008

Examples

			a(1) = 7 because we can write 7 = 1^2 + 5*1*1 + 1^2.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.

Crossrefs

Primes in A243172.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    a = {}; w = 5; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a]
  • Sage
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([1, 5, 1])
    print(Q.represented_positives(1303, 'prime')) # Peter Luschny, May 12 2021

A139502 Primes of the form x^2 + 22x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

241, 409, 601, 769, 1009, 1129, 1201, 1249, 1321, 1489, 1609, 1801, 2089, 2161, 2281, 2521, 2689, 3001, 3049, 3121, 3169, 3361, 3529, 3769, 3889, 4129, 4201, 4441, 4561, 4729, 4801, 4969, 5209, 5281, 5449, 5521, 5569, 5641, 5689, 5881, 6121, 6361, 6481
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

Also primes of the form x^2 + 120y^2. - T. D. Noe, Apr 29 2008
Also primes of the form x^2+240y^2. See A140633. - T. D. Noe, May 19 2008
In base 12, the sequence is 181, 2X1, 421, 541, 701, 7X1, 841, 881, 921, X41, E21, 1061, 1261, 1301, 13X1, 1561, 1681, 18X1, 1921, 1981, 1X01, 1E41, 2061, 2221, 2301, 2481, 2521, 26X1, 2781, 28X1, 2941, 2X61, 3021, 3081, 31X1, 3241, 3281, 3321, 3361, 34X1, 3661, 3821, 3901, where X is 10 and E is 11. Moreover, the discriminant is 340. - Walter Kehowski, Jun 01 2008

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(7000) | p mod 120 in {1, 49}]; // Vincenzo Librandi, Jul 28 2012
  • Mathematica
    QuadPrimes2[1, 0, 120, 10000] (* see A106856 *)

Formula

The primes are congruent to {1, 49} (mod 120). - T. D. Noe, Apr 29 2008

A243173 Numbers of the form x^2+15y^2.

Original entry on oeis.org

0, 1, 4, 9, 15, 16, 19, 24, 25, 31, 36, 40, 49, 51, 60, 61, 64, 69, 76, 79, 81, 85, 96, 100, 109, 115, 121, 124, 135, 136, 139, 141, 144, 151, 159, 160, 169, 171, 181, 184, 196, 199, 204, 211, 216, 225, 229, 235, 240, 241, 244, 249, 256, 265, 271, 276, 279, 285, 289, 304, 316, 321, 324, 331, 339, 340, 349, 360, 361, 375, 376, 379, 384, 391, 400, 409, 411
Offset: 1

Views

Author

N. J. A. Sloane, Jun 01 2014

Keywords

Comments

Discriminant -60.
Norms of numbers in Z[sqrt(-15)]. - Alonso del Arte, Sep 23 2014

Crossrefs

Primes: A033212.

Programs

  • Mathematica
    nn = 22; Union[Select[Flatten[Table[x^2 + 15 y^2, {x, 0, nn}, {y, 0, nn}]], # <= nn^2 &]] (* Bruno Berselli, Jun 02 2014 *)

A243174 Nonnegative integers of the form x^2 + 5*x*y - 5*y^2 (discriminant 45).

Original entry on oeis.org

0, 1, 4, 9, 16, 19, 25, 31, 36, 45, 49, 55, 61, 64, 76, 79, 81, 99, 100, 109, 121, 124, 139, 144, 145, 151, 169, 171, 180, 181, 196, 199, 205, 211, 220, 225, 229, 241, 244, 256, 261, 271, 279, 289, 295, 304, 316, 319, 324, 331, 349, 355, 361, 369, 379, 396, 400, 405, 409, 421, 436, 439, 441, 445, 451, 475, 484, 495, 496, 499, 505, 529, 531, 541, 549
Offset: 1

Views

Author

N. J. A. Sloane, Jun 01 2014

Keywords

Comments

Also numbers representable as x^2 + 7*x*y + y^2 with 0 <= x <= y. - Gheorghe Coserea, Jul 29 2018
Also numbers of the form x^2 - x*y - 11*y^2 with 0 <= x <= y (or x^2 + x*y - 11*y^2 with x, y nonnegative). - Jianing Song, Jul 31 2018
Also nonnegative integers of the form 9x^2 - 5y^2. - Jon E. Schoenfield, Jun 03 2022

Crossrefs

Primes: A033212.

A028957 Numbers represented by quadratic form with Gram matrix [ 2, 1; 1, 8 ] (divided by 2).

Original entry on oeis.org

0, 1, 4, 6, 9, 10, 15, 16, 19, 24, 25, 31, 34, 36, 40, 46, 49, 51, 54, 60, 61, 64, 69, 76, 79, 81, 85, 90, 94, 96, 100, 106, 109, 114, 115, 121, 124, 135, 136, 139, 141, 144, 150, 151, 159, 160, 166, 169, 171, 181, 184, 186, 190, 196, 199, 204, 211, 214, 216, 225
Offset: 1

Views

Author

Keywords

Comments

Nonnegative integers of the form x^2 + x*y + 4y^2, discriminant -15. - Ray Chandler, Jul 12 2014

Crossrefs

Primes are in A033212.

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 29 2000

A139494 Primes of the form x^2 + 11x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

13, 43, 61, 79, 103, 127, 139, 157, 181, 199, 211, 277, 283, 313, 337, 367, 373, 433, 439, 523, 547, 571, 601, 607, 673, 727, 751, 757, 823, 829, 859, 883, 907, 919, 937, 991, 997, 1039, 1063, 1069, 1093, 1117, 1153, 1171, 1213, 1231, 1249, 1291, 1297
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 11; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A139506 Primes of the form x^2 + 26x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

193, 337, 457, 673, 1009, 1033, 1129, 1201, 1297, 1801, 1873, 2017, 2137, 2377, 2473, 2521, 2689, 2713, 2857, 3049, 3217, 3313, 3361, 3529, 3697, 3889, 4057, 4153, 4201, 4561, 4657, 4729, 4993, 5209, 5233, 5569, 5737, 5881, 6073, 6217, 6337, 6553, 6577
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

Also primes of the form x^2 + 168y^2. - T. D. Noe, Apr 29 2008
In base 12, the sequence is 141, 241, 321, 481, 701, 721, 7X1, 841, 901, 1061, 1101, 1201, 12X1, 1461, 1521, 1561, 1681, 16X1, 17X1, 1921, 1X41, 1E01, 1E41, 2061, 2181, 2301, 2421, 24X1, 2521, 2781, 2841, 28X1, 2X81, 3021, 3041, 3281, 33X1, 34X1, 3621, 3721, 3801, 3961, 3981, where X is 10 and E is 11. Moreover, the discriminant is 480. - Walter Kehowski, Jun 01 2008

Crossrefs

Programs

  • Mathematica
    a = {}; w = 26; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a]

Formula

The primes are congruent to {1, 25, 121} (mod 168). - T. D. Noe, Apr 29 2008

A139512 Primes of the form x^2 + 32*x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

229, 349, 409, 421, 661, 769, 829, 1021, 1069, 1249, 1381, 1429, 1549, 1789, 1801, 1861, 2089, 2161, 2269, 2389, 3001, 3061, 3109, 3181, 3229, 3469, 3889, 4021, 4129, 4201, 4441, 4861, 4909, 5101, 5449, 5521, 5869, 5881, 6121, 6469, 6481, 6529, 6781
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

Are all terms == 1 mod 12? - Zak Seidov, Apr 25 2008
Yes: (i) all terms == 1 mod 3 because the quadratic form has terms == {0,1} mod 3 and the values ==0 mod 3 are not primes. (ii) all terms == 1 mod 4 because the quadratic form has terms == {0,1,2} mod 4 and the values = {0,2} mod 4 are not primes. By the Chinese remainder constructions for coprime 3 and 4 all prime terms are == 1 mod 12. - R. J. Mathar, Jun 10 2020

Crossrefs

Programs

  • Mathematica
    a = {}; w = 32; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A106858 Primes of the form 2x^2+xy+2y^2 with x and y nonnegative.

Original entry on oeis.org

2, 5, 23, 83, 107, 137, 173, 257, 293, 347, 353, 467, 503, 617, 647, 653, 743, 797, 857, 953, 983, 1223, 1277, 1283, 1307, 1427, 1487, 1493, 1523, 1553, 1637, 1787, 1877, 1913, 1997, 2003, 2027, 2213, 2237, 2243, 2393, 2423, 2447, 2657, 2663
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-15.

Crossrefs

Programs

  • Mathematica
    QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p]  && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];
    t2 = QuadPrimes2[2, 1, 2, 350000];
    Length[t2]
    t2[[Length[t2]]]
    For[n=1, n <= 2000, n++, Print[n, " ", t2[[n]]]] (* From N. J. A. Sloane, Jun 17 2014 *)

Extensions

Replace Mma program by a correct program, recomputed and extended b-file. - N. J. A. Sloane, Jun 17 2014
Previous Showing 11-20 of 41 results. Next