cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-49 of 49 results.

A340781 a(n) = (n - 1)*prime(n + 1) mod prime(n).

Original entry on oeis.org

0, 2, 4, 5, 8, 7, 12, 9, 2, 18, 29, 7, 24, 9, 37, 37, 32, 41, 5, 38, 47, 5, 49, 6, 96, 50, 1, 54, 3, 67, 120, 55, 64, 52, 68, 59, 59, 148, 61, 61, 80, 48, 84, 172, 88, 142, 130, 188, 96, 196, 67, 102, 38, 67, 67, 67, 112, 71, 232, 118, 34, 268, 248, 126, 256, 276
Offset: 1

Views

Author

Stefano Spezia, Jan 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Mod[(n-1)Prime[n+1],Prime[n]],{n,66}]
  • PARI
    a(n) = ((n-1)*prime(n+1)) % prime(n); \\ Michel Marcus, Jan 21 2021

Formula

a(n) = A306192(n) mod A000040(n).

A351369 a(n) = Sum_{p|n, p prime} p * prime(p).

Original entry on oeis.org

0, 6, 15, 6, 55, 21, 119, 6, 15, 61, 341, 21, 533, 125, 70, 6, 1003, 21, 1273, 61, 134, 347, 1909, 21, 55, 539, 15, 125, 3161, 76, 3937, 6, 356, 1009, 174, 21, 5809, 1279, 548, 61, 7339, 140, 8213, 347, 70, 1915, 9917, 21, 119, 61, 1018, 539, 12773, 21, 396, 125, 1288, 3167
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 08 2022

Keywords

Comments

Inverse Möbius transform of n * prime(n) * c(n), where c(n) is the characteristic function of primes (A010051). - Wesley Ivan Hurt, Apr 01 2025

Examples

			a(6) = 21; a(6) = Sum_{p|6} p * prime(p) = 2*3 + 3*5 = 21.
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Table[Total[# Prime[#]&/@FactorInteger[n][[;;,1]]],{n,2,80}]] (* Harvey P. Dale, Jan 28 2024 *)

Formula

a(n) = Sum_{d|n} d * prime(d) * c(d), where c = A010051. - Wesley Ivan Hurt, Apr 01 2025
a(p^k) = p * prime(p) for p prime and k>=1. - Wesley Ivan Hurt, Jul 16 2025

A352914 Expansion of e.g.f. exp(Sum_{k>=1} prime(k)*x^k).

Original entry on oeis.org

1, 2, 10, 74, 676, 7592, 97024, 1416200, 23015248, 412777952, 8090869984, 171435904928, 3908548404160, 95264270043776, 2470715015425024, 67913132377486208, 1971038886452490496, 60212661838223997440, 1930529043247940342272, 64801071784954698480128
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
          ithprime(j)*j*binomial(n, j)*j!, j=1..n)/n)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 28 2022
  • Mathematica
    a[0] = 1; a[n_] := a[n] = (n-1)! Sum[k Prime[k] a[n-k]/(n-k)!, {k, 1, n}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 28 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, prime(k)*x^k))))
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*prime(k)*a(n-k)/(n-k)!));

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} A033286(k) * a(n-k)/(n-k)!.

A026102 a(n) = T(2n-1,n), where T is the array in A026098.

Original entry on oeis.org

1, 6, 15, 28, 55, 78, 119, 152, 230, 290, 372, 444, 574, 645, 752, 901, 1062, 1159, 1273, 1491, 1606, 1817, 1992, 2314, 2522, 2828, 2987, 3210, 3270, 3616, 4191, 4323, 4658, 5004, 5364, 5738, 6123, 6357, 6847, 7266, 7697, 7964, 8595, 8685, 9259, 9552, 10339, 10927, 11577, 11908
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A033286. [R. J. Mathar, Oct 22 2008]

Programs

  • Mathematica
    T[1, 1] = 1; T[2, 1] = 3; T[2, 2] = 2; T[n_, 1] := Prime[n];
    T[n_, k_] := T[n, k] = Module[{m, mp, jtt}, For[m = 1, True, m++, mp = m Prime[n+1-k]; jtt = Join[Table[T[i, j], {i, 1, n-1}, {j, 1, i}] // Flatten, Table[T[n, j], {j, 1, k-1}]]; If[FreeQ[jtt, mp], Return[mp]]]];
    a[n_] := T[2n-1, n]; (* Jean-François Alcover, Sep 05 2019 *)
  • PARI
    lista(nn) = {my(all = []); for (n=1, nn, my(row = getrow(n, all)); if (n % 2, print1(row[(n+1)/2], ", ")); all = Set(concat(all, row)););} \\ uses getrow from A026098; Michel Marcus, Sep 04 2019

Formula

a(n) = A026098(A001844(n)). - Sean A. Irvine, Sep 16 2019

Extensions

Corrected and extended by Michel Marcus, Sep 04 2019

A106033 a(n) is the least number k such that n*prime(n)+k is a perfect square.

Original entry on oeis.org

2, 3, 1, 8, 9, 3, 2, 17, 18, 34, 20, 40, 43, 23, 24, 52, 21, 58, 23, 24, 67, 26, 27, 73, 75, 78, 28, 29, 88, 91, 32, 33, 103, 35, 114, 40, 120, 47, 48, 136, 57, 142, 68, 157, 160, 62, 83, 112, 113, 214, 217, 116, 223, 135, 26, 156, 43, 158, 41, 40, 161, 59, 259, 260, 104, 103
Offset: 1

Views

Author

Zak Seidov, May 05 2005

Keywords

Examples

			a(10)=34 because 10*prime(10)+34 = 10*29+34 = 324 = 18^2.
		

Crossrefs

Cf. A033286 (n*prime(n)), A080883 (distance of n to next square).

Programs

  • Mathematica
    a[n_]:=(Floor[Sqrt[n*Prime[n]]]+1)^2-n*Prime[n]
    lnk[n_]:=With[{c=n Prime[n]},(Floor[Sqrt[c]]+1)^2-c]; Array[lnk,70] (* Harvey P. Dale, Feb 17 2024 *)

Formula

a(n) = (floor(sqrt(n*prime(n)))+1)^2 - n*prime(n).
a(n) = A080883(A033286(n)). - Michel Marcus, Mar 29 2020

A161522 prime(n)*( prime(n)-n ).

Original entry on oeis.org

2, 3, 10, 21, 66, 91, 170, 209, 322, 551, 620, 925, 1148, 1247, 1504, 1961, 2478, 2623, 3216, 3621, 3796, 4503, 4980, 5785, 6984, 7575, 7828, 8453, 8720, 9379, 12192, 12969, 14248, 14595, 16986, 17365, 18840, 20375, 21376, 23009, 24702, 25159, 28268, 28757
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 12 2009

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Module[{pn=Prime[n]},pn(pn-n)];Array[f,50] (* Harvey P. Dale, Sep 23 2011 *)

Formula

a(n) = A000040(n)*A014689(n) = A001248(n)-A033286(n).

Extensions

Entries checked by R. J. Mathar, Sep 23 2009

A268467 Smallest prime that is the (sum, k*prime(k),k=m,..n+m-1) for some m, or 0 if no such m exists.

Original entry on oeis.org

2, 43, 23, 0, 1109, 1187, 929, 0, 4973, 1291, 11197, 0, 26099, 15583, 4423, 0, 42139, 10729, 21283, 0, 36899, 27179, 21563, 0, 24359, 33863, 27361, 0, 223423, 51239, 293467, 42043, 67699, 56503, 118361, 0, 80449, 94693, 136739, 0, 127837, 136991, 387913, 0, 304259, 192013, 321721, 0, 339517, 357683
Offset: 1

Views

Author

Zak Seidov, Feb 05 2016

Keywords

Comments

Smallest prime that is the sum of n consecutive terms of A033286.
Apparently a(n) exists for any odd n.
Values of m = {1, 3, 1, 0, 7, 6, 4, 0, 9, 2, 12, 0, 17, 11, 2, 0, 17, 4, 8, 0, 11, 7, 4, 0, 3, 5, 2, 0, 27, 5, 30, 1, 5, 2, 10, 0, 3, 4, 8, 0, 5, 5, 22, 0, 15, 6, 14, 0, 13, 13, ...}. - Michael De Vlieger, Feb 05 2016

Examples

			n=1: m=1 and 1*prime(1) = 1*2 = 2 = a(1),
n=2: m=3 and 3*prime(3)+4*prime(4) = 3*5+4*7 = 43 = a(2),
n=3: m=1 and 1*prime(1)+2*prime(2)+3*prime(3) = 1*2+2*3+3*15 = 23 = a(3),
n=4: no solution => a(4) = 0,
n=5: m=7 and 7*prime(7)+..11*prime(11) = 119+152+207+290+341 = 1109 = a(5).
		

Crossrefs

Programs

  • Mathematica
    Table[If[# == 0, 0, Sum[k Prime@ k, {k, #, n + # - 1}]] &@(SelectFirst[Range[10^3], PrimeQ@ Sum[k Prime@ k, {k, #, n + # - 1}] &] /. x_ /; MissingQ@ x -> 0), {n, 50}] (* Michael De Vlieger, Feb 05 2016, Version 10.2 *)

A356868 a(n) = n^2 * prime(n).

Original entry on oeis.org

2, 12, 45, 112, 275, 468, 833, 1216, 1863, 2900, 3751, 5328, 6929, 8428, 10575, 13568, 17051, 19764, 24187, 28400, 32193, 38236, 43907, 51264, 60625, 68276, 75087, 83888, 91669, 101700, 122047, 134144, 149193, 160684, 182525, 195696, 214933, 235372, 254007, 276800, 300899
Offset: 1

Views

Author

Alex Ratushnyak, Sep 01 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n^2 * Prime[n]; Array[a, 40] (* Amiram Eldar, Sep 02 2022 *)
  • Python
    from sympy import prime
    def a(n): return n**2 * prime(n)
    print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Sep 01 2022

A369867 a(n) = n * Sum_{p|n, p prime} prime(n/p) / p.

Original entry on oeis.org

0, 2, 2, 6, 2, 21, 2, 28, 15, 61, 2, 106, 2, 125, 70, 152, 2, 285, 2, 318, 134, 347, 2, 596, 55, 539, 207, 630, 2, 1073, 2, 848, 356, 1009, 174, 1542, 2, 1279, 548, 1572, 2, 2213, 2, 1766, 912, 1915, 2, 2984, 119, 2715, 1018, 2654, 2, 3879, 396, 3148, 1288, 3167
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*DivisorSum[n, Prime[n/#]/# &, PrimeQ[#] &], {n, 60}]
  • PARI
    a(n) = my(vp=primes([1, n])); n*sum(i=1, #vp, if (!(n % vp[i]), prime(n/vp[i])/vp[i])); \\ Michel Marcus, May 11 2024

Formula

From Wesley Ivan Hurt, May 10 2024: (Start)
a(p^k) = p^(k-1) * prime(p^(k-1)) for primes p and k >= 1.
a(A246655(n)) = A033286(A003557(A246655(n))). (End)
Previous Showing 41-49 of 49 results.